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Preface

Machine learning combines tools from statistics, mathematics, and computer science for a broad range
of problems in data analytics. Applications of machine learning have transformed society over the last
two decades. These recent advancements, in particular in deep learning, resulted from simultaneous
improvements in the methodology and the scaling up of computational hardware and data availibility.

The purpose of this course is to focus on one of the fundamental ingredients, optimization. At
a high level, most key problems in machine learning are optimization problems: for K ⊆ R

n and
f : Rn → R, solve

min
x∈K

f(x) .

The data set is already encoded inside the function f . For example, the variables can be certain
parameters, and we are trying to find a parametric function of a certain form that best fits our training
dataset. This also includes neural networks where the parameters are the different weights, and the
function is the output of the network at the given inputs.

Solving such optimization problems are hard : not only in the everyday meaning of the word, but
also in a strict sense in computational complexity. The first step in tackling them is to understand
the special assumptions under which they become tractable. The key here is convexity : in case the
domain K is a convex set and f is a convex function, optimality can be characterised locally.

Theory and algorithms for convex optimisation have been developed since the 1950s. The methods
particularly important for machine learning are those that can be implemented at scale and speed,
since the algorithms must work on massive datasets. The most important such family is first order
methods : these algorithms use only simple local information such as the gradient of the function at a
certain point, and follow the descent direction defined by the gradient.

Even though gradient descent is a very simple method, there is a rich and ever expanding theory of
different variants and implementations. Functions arising in machine learning can have various forms,
representations, and properties: we will see a range of variants to suit such requirements.

Second order methods are allowed to use more information about the functions, such as the Hessians.
This may not be available or prohibitively expensive to compute. But when such information is
available, we can obtain faster and more powerful optimisation algorithms.

Many important problems however require solving non-convex optimisation problems. We cannot
expect to optimally solve them in general. Still, convex optimisation provides powerful methods that
can also be applied in this context, even though the performance guarantees are missing in most cases.

There are several excellent textbooks and lecture notes available. Much of the course material is
based on the recent book Algorithms for convex optimization by Vishnoi [6]. Further recommended
books are Convex optimization by Boyd and Vandenberghe [1], Lectures on convex optimization by
Nesterov, First-order and stochastic optimization methods for machine learning by Lan [5], and the
lecture notes Optimization for machine learning by Gärtner and Jaggi [2].

The course focuses on the optimisation aspects on machine learning, and we do not discuss in detail
the statistical background. As a strating point we recommend An introduction to statistical learning
by James, Witten, Hastie, and Tibshirani [4].
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Chapter 1

Preliminaries

Norms and the Cauchy–Schwarz inequality For a vector x ∈ R
n and p ∈ [1,∞), the ℓp-norm

of the vector is defined as
‖x‖p = (|x1|p + . . .+ |xn|p)1/p .

For p =∞, we have ‖x‖∞ = maxi |xi|; this is also called the maximum norm. We will most frequently
use the ℓ2-norm; if not specified otherwise, ‖x‖ will refer to ‖x‖2.

The standard inner product is 〈x, y〉 = x⊤y =
∑n

i=1 xiyi for vectors x, y ∈ R
n. In particular,

‖x‖ =
√

〈x, y〉. Recall the Cauchy-Schwarz inequality.

Theorem 1.1 (Cauchy–Schwarz–Bunyakovski). For x, y ∈ R
n, we have

| 〈x, y〉 | ≤ ‖x‖ · ‖y‖ .

Further, equality holds if and only if x and y are linearly dependent, that is, x = αy for some α ∈ R.

Norms can be defined more generally, according to the following definition:

Definition 1.2. (Norm) A norm is a function ‖.‖ : Rn → R+ such that

(i) ‖α · x‖ = |α| · ‖x‖ for any x ∈ R
n and α > 0,

(ii) ‖x‖ = 0 if and only if x = 0, and

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Concepts from topology We restrict ourselves to the standard Euclidean topology with ℓ2-norm.
For x ∈ R

n and R > 0, the open ball centered at x with radius R > 0 is {y ∈ R
n : ‖x − y‖ < R}. A

set K ⊆ R
n is open if K contains an open ball around every point x ∈ K. A set K ⊆ R

n is closed if
R
n \K is open. We let int(K) denote the interior of K, which is the set of points x ∈ K such that K

contains an open ball around x.
The closure cl(K) of K is the unique smallest closed set containing K. Note that if K is closed

then cl(K) = K. Equivalenly, cl(K) is the set of all limit points of convergent sequences in K. We let
∂K := cl(K) \ int(K) denote the boundary of K.

The diameter of a set K ⊆ R
n is sup{‖x− y‖ : x, y ∈ K}; the set K is bounded, if its diameter is

finite. The set K is compact if it is closed and bounded.

1.1 Linear algebra

A hyperplane in R
n is a set of the form {x ∈ R

n | 〈a, x〉 = β}, where a is a nonzero vector of Rn and
β ∈ R.
A half-space in R

n is a set of the form {x ∈ R
n | 〈a, x〉 ≤ β}, where a is a nonzero vector of Rn and

β ∈ R.
A polyhedron in R

n is the intersection of a finite number of half-spaces. Equivalently, a polyhedron is
a set that can be written in the form P = {x ∈ R

n |Ax ≤ b} where A ∈ R
m×n, b ∈ R

m. Recall that
this is the feasible region of a linear programming (LP) problem.
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1.1. LINEAR ALGEBRA 5

Linear combinations, linear spaces

The vector x ∈ R
n is a linear combination of the vectors x1, . . . , xq ∈ R

n if there exist scalars λ1, . . . , λq

such that

x =

q
∑

j=1

λjx
j .

The vectors x1, . . . , xq ∈ R
n are linearly independent if λ1 = . . . = λq = 0 is the unique solution to the

system
∑q

j=1 λjx
j = 0.

A nonempty subset L of Rn is a linear space if L is closed under taking linear combinations, i.e.
every linear combination of vectors in L belongs to L. A subset L of Rn is a linear space if and only
if L = {x ∈ R

n |Ax = 0} for some matrix A ∈ R
m×n.

A basis of a linear space L is a maximal set of linearly independent vectors in L. All bases have
the same cardinality. This cardinality is called the dimension of L. If L = {x ∈ R

n |Ax = 0}, then
the dimension of L is n − rank(A). We note that a hyperplane in R

n is an n − 1 dimensional linear
subspace.

The inclusionwise minimal linear space containing a set S ⊆ R
n is the linear space generated by S,

and is denoted by span(S). Given any maximal set S′ of linearly independent vectors in S, we have
that span(S) = span(S′).

Convex combinations, convex sets

A point x in R
n is a convex combination of the points x1, . . . , xq ∈ R

n if there exist nonnegative scalars
λ1, . . . , λq ≥ 0 such that

x =

q
∑

j=1

λjx
j ,

q
∑

j=1

λj = 1.

In particular, given three points x, y, z in R
n, the point z is a convex combination of x and y if

there exists λ ∈ [0, 1] such that z = λx + (1 − λ)y, that is, z is contained in the line segment joining
x and y. This line segment will also be denoted as [x, y] = {λx + (1 − λ)y | 0 ≤ λ ≤ 1}. If x 6= y and
λ ∈ (0, 1), then we say that z is a proper convex combination of x and y.

Definition 1.3. A set C ⊆ R
n is convex if C contains all convex combinations of points in C.

Equivalently, C ⊆ R
n is convex if for any two points x, y ∈ C, the line segment [x, y] is contained in

C.

Figure 1.1: The set on the left is not convex, the one on the right is convex.

It is an easy exercise to show that every half-space is convex, and that the intersection of convex
sets is convex. This shows that every polyhedron (and thus the feasible region of an LP problem) is a
convex set.

Given a set S ⊆ R
n, the convex hull of S, denoted by conv(S), is the inclusionwise minimal convex

set containing S. As the intersection of convex sets is a convex set, conv(S) exists. Moreover, it is the
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set of all points that are convex combinations of points in S. That is,

conv(S) =







q
∑

j=1

λjx
j |x1, . . . , xq ∈ S, λ1, . . . , λq ≥ 0,

q
∑

j=1

λj = 1







.

1.1.1 Orthogonal projections

For a nonempty closed convex set K ⊆ R
n, we let ΠK : Rn → R denote the orthogonal projection to

K, defined as follows. For x ∈ R
n, ΠK(x) ∈ K denotes the point in K at the minimum ℓ2-distance

from x, that is,
ΠK(x) := argmin

v∈K
‖x− v‖ .

By the closedness of K and the strong convexity of the ℓ2-norm (defined later), there is a unique such
point.

Orthogonal projections will be particularly important for linear spaces: let L ⊆ R
n be a linear

space. Then, it can be shown that ΠL(x) is a linear operator. That is, there exists a matrix P ∈ R
n×n

such that ΠL(x) = Px. It is easy to see that P is a symmetric matrix (see Section 1.1.3) and P 2 = P .

1.1.2 Separating and supporting hyperplanes for convex sets

We now derive a basic but very crucial consequence of convexity.

Definition 1.4 (Separating and supporting hyperplanes). Let K ⊆ R
n be a convex set, and y ∈ R

n\K.
The hyperplane H = {x ∈ R

n | 〈a, x〉 = β} separates y from K if

〈a, x〉 ≤ β ∀x ∈ K , and 〈a, y〉 > β .

If y ∈ ∂K is on the boundary, then H is a supporting hyperplane at y if

〈a, x〉 ≤ β ∀x ∈ K , and 〈a, y〉 = β .

Theorem 1.5. Let K ⊆ R
n be a nonempty closed convex set. For every y ∈ R

n \ K, there exists a
hyperplane that separates y from K, and for every y ∈ ∂K there exists a supporting hyperplane at y.

Proof. For y ∈ R
n \K, let x∗ = ΠK(y) denote the projection of y to K. Let us define

a := y − x∗ and β := 〈a, x∗〉 .

Clearly, a 6= 0. We claim that H = {x ∈ R
n | 〈a, x〉 = β} separates y from K.

The part 〈a, y〉 > β follows from the definition:

〈a, y〉 − β = 〈y − x∗, y〉 − 〈y − x∗, x∗〉 = ‖y − x∗‖2 > 0 .

We need to show 〈a, x〉 ≤ β for any x ∈ K. Let us pick any ε ∈ (0, 1]. By convexity of K, x̄ =
(1− ε)x∗ + εx = x∗ + ε(x− x∗) ∈ K. Since x∗ was chosen as a minimum-norm point, we have

‖y − x̄‖2 ≥ ‖y − x∗‖2 .

Rewriting y − x̄ = (y − x∗)− ε(x− x∗), this yields

‖y − x∗‖2 − 2ε 〈y − x∗, x− x∗〉+ ε2‖x− x∗‖2 ≥ ‖y − x∗‖2 .

Rearranging and dividing by 2ε,

ε

2
‖x− x∗‖2 ≥ 〈y − x∗, x− x∗〉 .

Since this is true for any choice of ε > 0, we can conclude that

0 ≥ 〈y − x∗, x− x∗〉 = 〈a, x− x∗〉 = 〈a, x〉 − β , (1.1)
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completing the proof.

For the second part, let y ∈ ∂K be on the boundary. Let us select a sequence of points yi ∈ R
n \K,

yi → y (the existence of such a sequence follows from y being on the boundary). For each such point,
we get a separating hyperplane Hi = {x ∈ R

n | 〈ai, x〉 = βi}. Since ai 6= 0, we can normalise such that
‖ai‖ = 1 for each i; it is easy to check that the βi’s should also be bounded. We can thus select a
subsequence where (ai, βi) is also convergent, let (a, β) denote the limit. Then, it is easy to verify that
H = {x ∈ R

n | 〈a, x〉 = β} is a supporting hyperplane at y.

1.1.3 Symmetric matrices

Let A ∈ R
n×n be a symmetric matrix, that is, aij = aji for every i, j. We say that A is positive definite

if, for all x ∈ R
n
r {0}, x⊤Ax > 0. We say that A is positive semidefinite if, for all x ∈ R

n, x⊤Ax ≥ 0.

Further, we say that A is negative definite if −A is positive definite, that is, if for all x ∈ R
n
r {0},

x⊤Ax < 0. Similarly, A is negative semidefinite, if, for all x ∈ R
n, x⊤Ax ≤ 0.

Clearly, the identity matrix is positive definite. Also, a diagonal matrix with all positive entries
is positive definite (PD), and a diagonal matrix with all nonnegative entries is positive semidefinite
(PSD). A basic property is that positive and negative definite matrices are invertible:

Lemma 1.6. If A ∈ R
n×n is positive definite or negative definite, then A is invertible.

Proof. Recall that the matrix A ∈ R
n×n is invertible if and only if the n column vectors are independent,

that is, Ax = 0 for x ∈ R
n implies x = 0. Let A be positive definite, and for a contradiction assume

there exists an x ∈ R
n, x 6= 0 such that Ax = 0. We get a contradiction as 0 < x⊤Ax = x⊤0 = 0. The

analogous argument works for negative definite matrices.

A well-known example of positive semidefinite matrices is the covariance matrix of a random vector.
Indeed, recall that, if p ∈ R

n is a random vector with mean p̄, then its covariance matrix is the matrix
Σ whose (i, j) entry is Σij = E[(pi − p̄i)(pj − p̄j)]. One can easily compute that, for all x ∈ R

n

Var 〈p, x〉 = x⊤Σx. Since the variance of random variable is always nonnegative, it follows that
x⊤Σx ≥ 0 for all x ∈ R

n.

A matrix can be neither positive nor negative semidefinite. Such matrices are called indefinite. For

example, let A =

(

1 0
0 −2

)

. Then, for x =
(

1
0

)

, x⊤Ax = 1, and for y =
(

0
1

)

, y⊤Ay = −2.

Definition 1.7 (Eigenvalues and eigenvectors). For a square matrix A ∈ R
n×n, λ ∈ R is an eigenvalue

if there exists a vector v ∈ R
n such that Av = λv.

We can recognise positive/negative (semi)definite matrices based on their eigenvalues.

Theorem 1.8. Let A ∈ R
n×n be a symmetric matrix. The following hold.

(i) A is positive definite if and only if all its eigenvalues are positive. A is negative definite if and
only if all its eigenvalues are negative.

(ii) A is positive semidefinite if and only if all its eigenvalues are nonnegative. A is negative semidef-
inite if and only if all its eigenvalues are nonpositive.

Proof. We only prove the statements for positive (semi)definite matrices; the statements for a negative
(semi)definite A then follow by applying these to −A.

Part (i) “only if ” direction: Assume A has a negative eigenvalue λ < 0. For the corresponding
eigenvector v ∈ R

n, we have v 6= 0 and Av = λv. Then, v⊤Av = v⊤(λv) = λ‖v‖2 < 0.

“if ” direction: Let λ1, λ2, . . . , λn be the eigenvalues of A (with multiplicities). It is well-known that
any symmetric matrix A can be orthogonally diagonalised. That is, we can write

A = P⊤DP,



8 CHAPTER 1. PRELIMINARIES

where P is an orthogonal matrix, and D is a diagonal matrix with the diagonal entries being the
eigenvalues: Dii = λi. Consider now any vector x ∈ R

n, and let y = Px. Then,

x⊤Ax = x⊤P⊤DPx = y⊤Dy =
n
∑

i=1

λiy
2
i .

Since P is nonsingular, y = 0 if and only if x = 0. If λi > 0 for all i, then it follows that x⊤Ax > 0
whenever x 6= 0.

Part (ii) Follows the same way, replacing > 0 by ≥ 0.

Several different matrix norms are used; a fundamental one is the following.

Definition 1.9 (Spectral norm). For A ∈ R
n×m, the spectral norm or ℓ2 → ℓ2 norm is defined as

‖A‖2 := sup
x∈Rm

‖Ax‖
‖x‖ .

Theorem 1.10. If A ∈ R
n×n is a positive semidefinite matrix, then ‖A‖2 equals the largest eigenvalue

of A.

Ordering of positive semidefinite matrices For positive semidefinite (PSD) matrices P,Q ∈
R
n×n, we say that P is PSD-smaller than Q, denoted by P � Q, if Q − P is also PSD matrix.

Equivalently, this means that for any vector v ∈ R
n, v⊤Pv ≤ v⊤Qv. Thus, P is a PSD matrix if and

only if P � 0. We also use P ≺ Q if Q− P is positive definite; thus, P is positive definite if and only
if P ≻ 0.

1.2 Gradients and Hessians

Functions and graphs Given a function f : Rn → R, we denote by dom f the domain of f , that is,
the set of points x in R

n for which f(x) is defined. For example, the domain of the function x 7→ log x
is the set {x ∈ R |x > 0}, whereas the domain of the function f : R2 → R defined by (x1, x2) 7→ x1/x2
is the set dom f = {(x1, x2) ∈ R

2 |x2 6= 0}.

Definition 1.11 (Graph and epigraph). The graph of a function f : Rn → R is the set {(x, f(x)) ∈
R
n+1 |x ∈ dom f}, and the epigraph is the set of points in R

n+1 that “lie above” the graph of f , that
is, the set {(x, t) ∈ R

n+1 |x ∈ dom f, f(x) ≤ t}.

−4
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−200
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Figure 1.2: Graph of the function f(x1, x2) = x31 + x32. The epigraph of f is the region above the
shaded surface.
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Gradients The gradient of the function f at point x ∈ dom f is the vector

∇f(x) :=













∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn













where ∂f(x)
∂xi

is the i-th partial derivative of f at point x, i.e., the derivative of f at point x taken with
respect to the variable xi. In particular, when n = 1 (i.e. f is a function of one variable), the gradient
is simply the derivative of f .

Definition 1.12 (Differentiable function). A function f : R
n → R is differentiable at a point x in

the interior of dom f if

lim
z∈dom f, z→x

|f(z)− f(x)− 〈∇f(x), z − x〉 |
‖z − x‖ = 0.

Geometrically, differentiability at x means that, near x, f is well approximated by the affine function
h : dom (f)→ R defined by h(z) = f(x) + 〈∇f(x), z − x〉.

We say that a continuous function f is differentiable if dom f is an open set and f is differentiable
at every point x ∈ dom f .

For example, the function f : R2 → R, defined over dom f = {x ∈ R
2 |x1, x2 > 0} by f(x1, x2) =

log(x1/x2), is differentiable, and its gradient at any point x ∈ dom f is

∇f(x) :=
[

1/x1
−1/x2

]

.

The function f : x 7→ |x| is not differentiable, because its derivative does not exist at x = 0.

Figure 1.3: Graph of the function x 7→ |x|.

Recall that, if f is differentiable at x̄ in the interior of dom f , then the gradient of f at x̄ points
in the direction of steepest ascent of the graph of f at point (x̄, f(x̄)). More formally, the hyperplane
in R

n+1 defined by
H = {(x, t) ∈ R

n × R | t = f(x̄) + 〈∇f(x̄), x− x̄〉},
is the hyperplane tangent to the graph of f at point (x̄, f(x̄)). The direction of steepest ascent for the
tangent hyperplane H is the direction of the gradient ∇f(x̄), and the slope of H in the direction of
∇f(x̄) is the magnitude ‖∇f(x)‖ of the gradient. This will be further discussed in Section 5.

Another geometric interpretation is that the gradient at point x̄ is a vector orthogonal to the
contour of f at point x̄ – that is, the set {x ∈ R

n | f(x) = f(x̄)} – pointing in the direction of ascent
of the function at x̄ (see Figure 1.5).

1.2.1 Directional derivatives

Given f : R
n → R, a point x̄ ∈ dom f and a vector p ∈ R

n, we can define the univariate function
gp : R → R as g(t) := f(x̄ + tp). The directional derivative of f at point x̄ in the direction p is the
derivative of gp at t = 0, that is

∂f

∂p
(x̄) = g′p(0).
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x

t

x̄

t = f(x̄) + f ′(x̄)(x− x̄)

t = f(x)

g

Figure 1.4: For functions of one variables, the gradient at point x̄ is the slope of the tangent to the
graph at point (x̄, f(x̄)).

Figure 1.5: For functions of one variables, ∇f(x̄) is orthogonal to the contour at x̄ and pointing in the
direction of ascent.

The geometric meaning of the above is that the directional derivative ∂f(x̄)/∂p measures the rate of
change of f at point x̄ when moving in the direction of p.

If f is differentiable, then we have

∂f

∂p
(x̄) = 〈∇f(x̄), p〉 . (1.2)

We now give an important property of directional derivatives that can be derived from the funda-
mental theorem of calculus we recall here.

Theorem 1.13 (Fundamental theorem of calculus, second part). Let f : [a, b]→ R be a continuously
differentiable univariate function. Then,

∫ b

a
ḟ(t)dt = f(b)− f(a) .

It is easy to show the following corollary:

Lemma 1.14. Let f : R
n → R be continuously differentiable, let dom f be convex, and let x, y ∈

dom f . Let us define g : [0, 1]→ R as

g(t) := f(x+ t(y − x)) .

Then, the following hold:
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(i) ġ(t) = 〈∇f(x+ t(y − x)), y − x〉, and

(ii) f(y) = f(x) +
∫ 1
0 ġ(t)dt.

1.2.2 The Hessian

The function f : Rn → R is said to be twice differentiable if f and ∇f are both differentiable. Note
that ∇f is differentiable if, for j = 1, . . . , n, the function x 7→ (∇f(x))j defined by the j-th component
of ∇f is differentiable. The Hessian of a twice differentiable function f : Rn → R at point x ∈ dom f
is the n× n matrix

∇2f(x) :=













∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2∂x2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂xn∂xn













that is, the (i, j) entry of ∇2f(x) is the second partial derivative of f at x with respect to the variables

xi and xj . Note that ∇2f(x) is symmetric since ∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

.

If n = 1, then ∇2f is simply the second derivative of f . Assume that f(x) =
∑n

i=1 fi(xi), where
fi : R → R is a univariate function in xi for each i = 1, 2, . . . , n. Then the Hessian is a diagonal
matrix where the ith entry is f ′′

i (xi).

1.2.3 Taylor expansion

Recall the second order Taylor-expansion of a univariate function.

Theorem 1.15. Assume that f : R → R is twice differentiable on dom f . Then for every x, y ∈
dom f , we can write

f(x) = f(y) + f ′(y)(x− y) +
1

2
f ′′(x̄)(x− y)2

for some x̄ ∈ [x, y].

The Taylor expansion shows that for a small ε > 0, the function f in the interval [y − ε, y + ε]
can be well approximated by the linear function f(y) + f ′(y)(x − y). We now give the extension of
Theorem 1.15 to multivariate functions.

Theorem 1.16 (Taylor expansion of multivariate functions). Assume that f : R
n → R is twice

differentiable on dom f . Then for every x, y ∈ dom f , we can write

f(x) = f(y) + 〈∇f(y), x− y〉+ 1

2
(x− y)⊤∇2f(x̄)(x− y)

for some x̄ ∈ [x, y].

1.3 Global and local optima

Given a function f : Rn → R and a set X ⊆ dom f , we say that a point x∗ ∈ X is a global minimum
for f in X if f(x) ≥ f(x∗) for all x ∈ X. We say that x∗ ∈ X is a global maximum for f in X if
f(x) ≤ f(x∗) for all x ∈ X.

A point x∗ ∈ X is said a local minimum for f in X if there exists ε > 0 such that f(x) ≥ f(x∗) for
all x ∈ X such that ‖x − x∗‖ ≤ ε. We say that x∗ ∈ X is a local maximum for f in X if there exists
ε > 0 such that f(x) ≤ f(x∗) for all x ∈ X such that ‖x− x∗‖ ≤ ε.

When X = dom f , we refer simply to global or local maxima or minima.

Consider, for example, the single variable function whose graph is represented in Figure 1.6. The
point x′ is a local minimum of f , because we can find a small interval around x′ where no point
has value smaller than x′. However, x′ is not a global minimum because there are points with lower
objective value.

We recall the following facts from calculus concerning local optima of unconstrained problems.
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x′

x′′

Figure 1.6: Point x′ is a local minimum, but not a global minimum.

Theorem 1.17 (First-order necessary conditions). Let f : R
n → R be differentiable, and let x∗ be a

point in dom f . If x∗ is a local maximum or a local minimum for f , then ∇f(x∗) = 0.

A point x∗ such that ∇f(x∗) = 0 is called a critical point. Hence, every local optimum is a critical
point, but there can also be further critical points, see Figure 1.7.

Figure 1.7: Three points with zero gradient. From left to right, the first point is a local minimum, the
second a saddle point, and the third a local maximum.

1.3.1 Second-order criteria for critical points

If the function is twice differentiable, the Hessian can be used to analyse critical points. Recall that
for a twice differentiable univariate function f : R → R, if x∗ is a local minimum (maximum), then
f ′(x∗) = 0, and f ′′(x∗) ≥ 0 (f ′′(x∗) ≤ 0). This statement naturally extends to multivariate functions.

Theorem 1.18. Let f : Rn → R be twice differentiable, and let x∗ be a critical point in dom f . Then

(i) If the Hessian ∇2f(x∗) is positive definite, then x∗ is a local minimum.

(ii) If x∗ is a local minimum for f , then ∇2f(x∗) is positive semidefinite.

(iii) If the Hessian ∇2f(x∗) is negative definite, then x∗ is a local maximum.

(iv) If x∗ is a local maximum for f , then ∇2f(x∗) is negative semidefinite.

Note the gap between (i) and (ii), as well as between (iii) and (iv). If the Hessian is positive
semidefinite or negative semidefinite, we cannot infer anything about x∗. As an example, consider the
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univariate f(x) = x3 at x∗ = 0. We have ∇f(0) = 0 and ∇2f(0) = 0; this is at the same time a
positive and a negative semidefinite 1× 1 matrix.

Definition 1.19 (Saddle point). Let f : Rn → R be twice differentiable, and let x∗ be a critical point
in dom f . If ∇f2(x∗) is indefinite (has both positive and negative eigenvalues), then x∗ is called a
saddle point.

From a saddle point, we can find directions where the function value increases, as well as directions
where it decreases, see Figure 1.8.

Figure 1.8: Saddle point of a function.



Chapter 2

Basic concepts in convex optimization

2.1 Convex functions

A function f : Rn → R is convex if dom f is convex and, for every x, y ∈ dom f , and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) . (2.1)

x yλx+ (1− λ)y

f(x)

f(y)

f(λx+ (1− λ)y)

λf(x) + (1− λ)f(y)

Figure 2.1: A function f is convex if the line segment joining any two points in the graph of f is
contained in the epigraph of f .

Figure 2.1 provides a geometric interpretation of the above definition. Note the point (λx + (1 −
λ)y, f(λx + (1 − λ)y)) in R

n+1 is a point on the graph of f , therefore (2.1) says that the point
(λx + (1 − λ)y, λf(x) + (1 − λ)f(y)) belongs to the epigraph of f . Observe that the set of all points
(λx + (1 − λ)y, λf(x) + (1 − λ)f(y)) for λ ∈ [0, 1] is the line segment joining (x, f(x)) to (y, f(y)),
therefore (2.1) means that the epigraph of f contains the line segment joining any two points in the
graph of f . This implies the following.

Proposition 2.1. A function f : Rn → R is convex if and only if the epigraph of f is a convex set.

The simplest example of convex functions are affine functions. The function f : Rn → R is affine
if there exists p ∈ R

n and r ∈ R such that f(x) = 〈p, x〉 + r; note that linear functions are affine
functions where r = 0.

It will be convenient to extend the definition of a convex function f to the points not in the domain,
by considering f : Rn → R∪{+∞}, where f(x) = +∞ for every x /∈ dom f . Note that this convention
respects the definition of convexity given by (2.1). Indeed, if one among x, y ∈ R

n is not in dom f ,
then the right-hand-side of (2.1) is +∞, and the inequality is still verified. With this notation, it
follows that dom f = {x ∈ R

n | f(x) < +∞}.
We remark, without proof, that convex functions are always continuous.

14
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Theorem 2.2. If a function f : R
n → R is convex and dom f is open, then f is continuous on

dom f .

2.1.1 Univariate convex functions

Let us recall the familiar case of univariate functions f : R→ R. A practical test involves the second
derivatives.

Theorem 2.3. Assume that f : R → R is twice differentiable on dom f . Then f is convex if and
only if the second derivative f ′′ is nonnegative on dom f .

Using this criterion, we can easily verify the convexity of the following univariate functions.

• f(x) = − log x, where dom f = {x ∈ R |x > 0}.

• f(x) = ex, where dom f = R.

• f(x) = 1/x, where dom f = {x ∈ R |x > 0}. Observe that f(x) = 1/x can be defined over
Rr {0}, but it is not convex over the negative reals.

• f(x) = x log x, where dom f = {x ∈ R |x > 0}.

2.1.2 Simple constructions of convex functions

Let us show two simple operations that enable constructing convex functions from other convex func-
tions. The first one is nonnegative linear combination.

Proposition 2.4. If f1, . . . , fm : Rn → R are convex and γ1, . . . , γm ≥ 0, then f = γ1f1+ · · ·+ γmfm
is convex.

Proof. We need to show that for every x, y ∈ dom f , and λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1−
λ)f(y). This follows using the convexity of the fi’s:

f(λx+ (1− λ)y) =
m
∑

i=1

γifi(λx+ (1− λ)y) ≤
m
∑

i=1

γi(λfi(x)) + (1− λ)fi(y))

= λ
m
∑

i=1

γifi(x) + (1− λ)
m
∑

i=1

γifi(y) = λf(x) + (1− λ)f(y).

The second operation is taking point-wise supremum. This is illustrated in Figure 2.2.

f2

f1

f3
f

Figure 2.2: The graph of the point-wise maximum of the three convex functions in the picture is in
boldface.
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Proposition 2.5. If fα : Rn → R (α ∈ A) is a family of convex functions indexed by the elements of
a set A (possibly infinite), then the function f defined by

f(x) := sup
α∈A

fα(x)

is convex.

We present two different proofs.

Proof 1. Let Kα := {(x, t) ∈ R
n+1, t ≥ fα(x)} denote the epigraph of fα and K := {(x, t) ∈ R

n+1, t ≥
f(x)} the epigraph of f .

Recall from Proposition 2.1 that a function is convex if and only if its epigraph is convex. Thus,
each Kα is convex. It is easy to see that K = ∩α∈AKα. Since the intersection of any number of convex
sets is convex, it follows that K is convex. By the equivalence in Proposition 2.1, we get the convexity
of f .

Proof 2. Again, we need to show that for every x, y ∈ dom f , and λ ∈ [0, 1], f(λx + (1 − λ)y) ≤
λf(x)+(1−λ)f(y). This follows by showing that for any ε > 0, f(λx+(1−λ)y)−ε ≤ λf(x)+(1−λ)f(y).

Let us now select an arbitrary ε > 0. By the definition of supremum, there exists an α ∈ A such
that f(λx+ (1− λ)y)− ε ≤ fα(λx+ (1− λ)y). Then we use the convexity of fα:

f(λx+ (1− λ)y)− ε ≤ fα(λx+ (1− λ)y) ≤ λfα(x) + (1− λ)fα(y) ≤ λf(x) + (1− λ)f(y).

The last inequality follows by the definition of f .

We note that if A is a finite set, then ε is not needed. In this case, we always have an α ∈ A such
that f(λx+ (1− λ)y) = fα(λx+ (1− λ)y).

2.1.3 First order characterisation of convexity

Theorem 2.6. Let f : Rn → R be differentiable. Then f is convex if and only if, for all x, y ∈ dom f ,

f(x) ≥ f(y) + 〈∇f(y), x− y〉 .

Proof. “⇒” Assume f is convex. By (2.1), for every λ, 0 < λ ≤ 1, it follows

f(y) + λ(f(x)− f(y)) = λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) = f(y + λ(x− y)).

Subtracting f(y) on both sides and dividing by λ on both sides, we get

f(x)− f(y) ≥ f(y + λ(x− y))− f(y)

λ

for 0 < λ ≤ 1. Taking the limit for λ→ 0+,

f(x)− f(y) ≥ lim
λ→0+

f(y + λ(x− y))− f(y)

λ
=

∂f(y)

∂(x− y)
= 〈∇f(y), x− y〉 ,

where ∂f(y)/∂(x− y) is the directional derivative at y along the vector x − y, and the last equation
follows from (1.2).

“⇐” Assume f(x) ≥ f(y) + 〈∇f(y), x− y〉 for all x, y ∈ dom f . For all y ∈ dom f , define the
function fy : x 7→ f(y) + 〈∇f(y), x− y〉. Note that the function fy is affine, therefore it is convex.
Also, by assumption f(x) ≥ fy(x) for all x ∈ dom f , and by definition f(x) = fx(x). It follows that,
for all x ∈ dom f ,

f(x) = max
y∈dom f

fy(x).

Thus f(x) is the point-wise supremum of a family of convex functions, and is therefore convex by
Proposition 2.5.
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For a geometric intuition of Theorem 2.6, recall that the hyperplane tangent to the graph of f at
point (y, f(y)) is H = {(x, t) ∈ R

n × R | t = f(y) + 〈∇f(y), x− y〉, therefore the theorem states that
a function is convex if and only if, for every y, the graph of the function lies above the hyperplane
tangent to the graph of f at point (y, f(y)).

For a twice differentiable univariate function f : R → R, the univariate Taylor expansion (Theo-
rem 1.15) gives that for x, y ∈ dom f , there exists a x̄ ∈ [x, y] such that

f(x) = f(y) + f ′(y)(x− y) +
1

2
f ′′(x̄)(x− y)2 ≥ f(y) + f ′(y)(x− y) ,

where the inequality follows by Theorem 2.3. This gives an alternative proof for the first direction in
Theorem 2.6 for the twice differentiable case. Note however that Theorem 2.6 and the above proof are
valid even for functions that are not twice differentiable.

Bregman divergence An important quantity in the analysis of gradient methods is defined as
follows:

Definition 2.7. Let f : Rn → R be differentiable. The Bregman divergence of f at x, y ∈ dom f is

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉 .

Note that this is not symmetric: Df (x, y) 6= Df (y, x) is possible. According to Theorem 2.6, f is
convex if and only if Df (x, y) ≥ 0 for all x, y ∈ dom f .

For a convex function, we can think of f(y) + 〈∇f(y), x− y〉 as a lower estimate on f(x); the
Bregman divergence Df (x, y) measures the gap between the estimate and the actual value. Under
certain assumptions on this function, we will show lower and upper bounds on Df (x, y).

2.1.4 Minima of convex functions

The following is a fundamental property of convex functions.

Theorem 2.8. Let f : R
n → R be convex, and let X ⊆ dom f be a convex set. Then every local

minimum of f in X is also a global minimum of f in X.

Proof. Let x∗ be a local minimum for f in X. By definition, there exists ε > 0 such that f(x∗) ≤ f(x)
for all x ∈ X such that ‖x − x∗‖ < ε. Suppose by contradiction that x∗ is not a global minimum.
Then there exists a point y ∈ X such that f(y) < f(x∗). Select a point x̄ := λx∗ + (1− λ)y for some
λ ∈ [0, 1) such that ‖x̄− x∗‖ < ε. By convexity of X, x̄ ∈ X, and by convexity of f ,

f(x̄) = f(λx∗ + (1− λ)y)

≤ λf(x∗) + (1− λ)f(y) = f(x∗) + (1− λ)(f(y)− f(x∗)) < f(x∗),

a contradiction.

Furthermore, the first order necessary conditions in Theorem 1.17 are also sufficient for convex
functions.

Theorem 2.9 (First order conditions for unconstrained convex minimization). Let f : Rn → R be a
differentiable convex function. A point x∗ ∈ dom f is a global minimum of f if and only if ∇f(x∗) = 0.

Proof. We have already established in Theorem 1.17 that ∇f(x∗) = 0 if x∗ is a global minimum of f .
Conversely, assume ∇f(x∗) = 0. By Theorem 2.6, for every x ∈ dom f ,

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 = f(x∗).

It follows that f(x∗) is a global minimum.
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The above theorem holds for unconstrained convex minimization problems, i.e., problems where
we want to find the global minimum over the entire domain. The next theorem gives necessary and
sufficient conditions for the case where we want to find the minimizer in a given convex set X.

Theorem 2.10 (First order conditions for constrained convex minimization). Let f : R
n → R be

a differentiable convex function, and let X ⊆ dom f be a convex set. A point x∗ ∈ X is a global
minimum of f over X if and only if

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X.

Proof. We first prove the “if” direction. That is, assume 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X. It follows
by Theorem 2.6, for every x ∈ dom f ,

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 ≥ f(x∗),

which implies that x∗ is a global minimum for f over X.

For the “only if” direction, assume x∗ is a global minimum over X. Given any x ∈ X, note that
the point λx+ (1− λ)x∗ is in X for every λ such that 0 < λ ≤ 1, because X is convex. Since x∗ is a
global minimum over X, and noting that λx+ (1− λ)x∗ = x∗ + λ(x− x∗) it follows that

f(x∗) ≤ f(x∗ + λ(x− x∗))

for every λ such that 0 < λ ≤ 1. Subtracting f(x∗) and dividing by λ on both sides, we have

0 ≤ f(x∗ + λ(x− x∗))− f(x∗)
λ

.

Taking the limit for λ→ 0+ we get the directional derivative in the direction x− x∗ bounded as

0 ≤ lim
λ→0+

f(x∗ + λ(x− x∗))− f(x∗)
λ

= 〈∇f(x∗), x− x∗〉 ,

which shows that 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X.

For a geometric interpretation of the previous theorem, let us consider the two following cases:

• If x∗ is in the interior of X, the previous theorem implies that x∗ is a global minimum if and
only if ∇f(x∗) = 0. Indeed, if x∗ is in the interior, then for ε > 0 sufficiently small the point
x = x∗−ε∇f(x∗) is also in X, thus 〈∇f(x∗), x− x∗〉 = −ε 〈∇f(x∗),∇f(x∗)〉 = −ε‖∇f(x∗)‖2 ≤ 0
and so the inequality 〈∇f(x∗), x− x∗〉 ≥ 0 implies ∇f(x∗) = 0.

• If x∗ is a point on the boundary of X and ∇f(x∗) 6= 0, then the previous theorem states
that x∗ is a minimizer in X if and only if X is contained in the half-space {x | 〈∇f(x∗), x〉 ≥
〈∇f(x∗), x∗〉}. This means that, all directions pointing towards X starting from x∗ on the
boundary are directions of ascent.

Example 2.11. Let us consider the function f : R2 → R defined as f(x) =
x2
1

x2
over dom f = {x ∈

R
2 |x2 > 0}. (In Example 2.13 we verify that f is convex.) Let X = {x ∈ R

2 | 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1}.
We will show that x∗ =

(

1
1

)

minimizes f in X. The gradient of f is

∇f(x) =
(

2x1/x2
−x21/x22

)

,

thus ∇f(x∗) =
(

2
−1

)

. According to Theorem 2.10, x∗ is a minimizer if and only if 〈∇f(x∗), x− x∗〉 ≥ 0
for all x ∈ X. Noting that 〈∇f(x∗), x∗〉 = 1, we need to verify that X is contained in the half-space
{x ∈ R

2 | (2,−1)x ≥ 1}. This is indeed the case, since x1 ≥ 2 and x2 ≤ 1 imply 2x1 − x2 ≥ 1. This is
shown in the figure below.
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X

∇f(x∗)

x∗

2x1 − x2 ≥ 1

f(x) = 2

f(x) = 1 f(x) = 1

2

Concave functions A function f is concave if −f is convex. Observe that Theorems 2.8 and 2.10
remain true if we replace “convex” with “concave” and “minimum” with “maximum”. We will also
extend concave functions f to the value range R ∪ {−∞} with f(x) = −∞ for all x /∈ dom f .

2.1.5 Second order characterisation of convexity

We now present a characterisation of twice differentiable convex functions. Recall the second order
characterisation of critical points from Theorem 1.18. As an immediate use of this characterisation,
we will be able to decide whether a twice differentiable function is convex based on the Hessian.

Theorem 2.12. Let f : Rn → R be twice differentiable.

(i) If ∇2f(z) is positive semidefinite for every z ∈ dom f , then f is convex.

(ii) Assume that f is convex, and ∇2f is continuous on dom f . Then, ∇2f(z) is positive semidefinite
for every z ∈ dom f .

Proof. We only prove part (i). This is immediate from Theorem 1.16 and Theorem 2.6. Let us
select any x, y ∈ dom f , and consider the Taylor expansion; pick x̄ ∈ [x, y] as in Theorem 1.16. By
assumption, ∇2f(x̄) is positive semidefinite, and therefore

Df (x, y) = f(x)− f(y)−∇f(y)⊤(x− y) =
1

2
(x− y)⊤∇2f(x̄)(x− y) ≥ 0.

Example 2.13. Consider the function as in Example 2.11, that is, f(x) =
x21
x2

, where dom f = {x ∈
R
2 |x2 > 0}. Then,

∇2f(x) =

( 2
x2

−2x1

x2
2

−2x1

x2
2

2x2
1

x3
2

)

=
2

x32

(

x22 −x1x2
−x1x2 x21

)

.

Pick any vector v ∈ R
2. Then,

v⊤∇2f(x)v =
2

x32
· (v1, v2)⊤

(

x22 −x1x2
−x1x2 x21

)

(v1, v2) =
2

x32
· (v1x2 − v2x1)

2 ≥ 0,

using that x2 > 0. We have thus shown that f(x) is convex.
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2.1.6 Convex quadratic functions

By a quadratic function f : R
n → R we mean a degree two polynomial function. For example,

f(x1, x2) = −x21 + 3x1x2 + 2x22 − 5x1 + 6x2 + 3. We can write every quadratic function in the form

f(x) = x⊤Qx+ 〈p, x〉+ r ,

where Q ∈ R
n×n is a symmetric matrix, p ∈ R

n, r ∈ R. For the particular example above, the

representation is Q =

(

−1 1.5
1.5 3

)

, p =

(

−5
6

)

, r = 3.

Theorem 2.14. Let Q ∈ R
n×n be a symmetric matrix, p ∈ R

n, and r ∈ R. The quadratic function
f(x) = x⊤Qx+ 〈p, x〉+ r is convex if and only if Q is positive semidefinite.

Proof. The function is twice continuously differentiable, and it is easy to see that ∇f2(x) = 2Q. The
claim follows using Theorem 2.12.

In the special case n = 1, we obtain the well-know fact that f(x) = ax2 + bx + c is convex if and
only if a ≥ 0.

2.2 Convex optimization problems

The general form of a mathematical optimization problem is

inf f0(x)
fi(x) ≤ 0 , i = 1, . . . ,m ,
hi(x) = 0 , i = 1, . . . , k .

(2.2)

The domain of problem (2.2) is the set of points for which the objective function and the constraints
functions are defined, that is

D =

(

m
⋂

i=0

dom fi

)

⋂

(

k
⋂

i=1

domhi

)

.

The feasible region is the set X of all points in D satisfying the constraints. If D = R
n and m = k = 0,

then the problem is called an unconstrained optimization problem.

We say that the above problem is a convex optimization problem if f0, . . . , fm are convex functions,
and h1, . . . , hk are affine functions; that is, there exist a1, . . . , ak ∈ R

m and b1, . . . , bk ∈ R such that
hi(x) = 〈ai, x〉 − bi (i = 1, . . . , k). The equality constraints can therefore be expressed as 〈ai, x〉 = bi.

Note that the requirement that h1, . . . , hk are affine is needed in order for the definition to be
consistent. Indeed, if we replaced each equality constraint hi(x) = 0 with the two inequality constraints
hi(x) ≤ 0, −hi(x) ≤ 0, then a convex problem should satisfy that both hi and −hi are convex, that
is, hi needs to be both concave and convex. The only functions that are both concave and convex are
the affine ones, therefore we need to require that hi are affine.

Note that, since f1, . . . , fm are convex functions, the sets {x | fi(x) ≤ 0} are convex sets (this is
easy to show). The sets {x | 〈ai, x〉 = bi} are hyperplanes, and therefore convex.

These facts and Theorem 2.8 imply the following important facts.

Remark 2.15. If problem (2.2) is convex, then

1. The feasible region X is convex, because it is the intersection of convex sets.

2. Every local optimum for f0 in X is also a global optimum.
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On the existence of solutions Note that the objective in (2.2) is infimum instead of minimum.
Even for convex optimization problems, it is possible that the infimum value exists but there is no
optimal solution. As a simple example take inf 1/x, over the domain x > 0.

Even in cases where an optimal solution exists to a convex program, it may not be a rational
number, already for e.g. convex cubic objectives. For both of these reasons, we usually aim to find an
approximately optimal solution

Definition 2.16 (Approximately optimal solutions). Let p∗ denote the optimum value in (2.2). We
say that x ∈ X is an ε-approximately optimal solution or a ε-approximate solution, if

f(x) ≤ p∗ + ε.

Concave maximization Convex optimization problems have been defined as minimization prob-
lems. However, if in a maximization problem of the form

sup f0(x)
fi(x) ≤ 0 , i = 1, . . . ,m ,
hi(x) = 0 , i = 1, . . . , k .

the objective function f0 is concave, while f1, . . . , fm are convex and h1, . . . , hk affine, we will also say
that the problem is a convex optimization problem. This is justified by the fact that the equivalent
minimization problem obtained by replacing “sup f0(x)” with “inf −f0(x)” is a convex optimization
problem, because −f0 is convex.

2.3 Convexity in regression problems

We now discuss some basic statistical models from a convex optimisation perspective. We do not cover
in detail the statistical context and applications; see the textbook [4] for such details.

2.3.1 Linear regression

Linear regression is one of the most fundamental models in statistics and machine learning. We are
given a dataset of m points; each data point has n features or predictor variables described by real
numbers. Thus, the j-th data point can be described as a vector (aj1, aj2, . . . , ajn) ∈ R

n. Further, we
have a dependent variable or target variable bj ; the goal is to predict this value from the feature values.
We assume a linear dependence of the form

bi = β0 + β1aj1 + β2aj2 + . . .+ βnajn + εi ,

where β = (β0, β1, . . . , βn) ∈ R
n+1 is an (unknown) vector of coefficients, including a bias term β0.

Each εi is a random error variable, that all come from the same normal distribution and are independent
from each other.

The input for the linear regression problem comprises a dataset on m feature vectors (aj1, . . . , ajn) ∈
R
n and dependent variables bj ∈ R, j = 1, 2, . . . ,m. The goal is to estimate the unknown coefficients

β ∈ R
n that describe the linear dependence. For simplicity of notation, we expand the feature vectors

to n+ 1 dimensions including a bias term aj0 = 1; we use aj = (1, aj1, . . . , ajn) ∈ R
n+1 to denote this

extended feature vector.
Given an estimate vector β̂ ∈ R

n, the residual of the i-th data point is the absolute value of the
difference between the predicted value and the target variable,

∣

∣

∣
β̂0 + β̂1aj1 + . . .+ β̂najn − bj

∣

∣

∣
=
∣

∣

∣

〈

aj , β̂
〉

− bj

∣

∣

∣
.

The least squares estimate finds the estimate β̂ ∈ R
n that minimizes the squared sum of the residuals,

that is, β̂ is the optimal solution

min
β∈Rn+1

m
∑

j=1

(〈aj , β〉 − bj)
2 . (2.3)
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Problem (2.3) turns out to be an unconstrained convex quadratic optimization problem. Let A ∈
R
m×(n+1) be the matrix with entries aji, j = 1, . . . ,m, i = 0, . . . , n, and b ∈ R

m the vector of
dependent variables. Thus, the i’th row of A is the vector a⊤i . We can rewrite the objective in the
form

m
∑

j=1

β⊤a⊤j ajβ − 2bj 〈aj , β〉+ b2j = β⊤





m
∑

j=1

aja
⊤
j



β − 2





m
∑

j=1

bjaj





⊤

β +
m
∑

j=1

b2j

= β⊤
(

A⊤A
)

β − 2
(

A⊤b
)⊤

β +
m
∑

j=1

b2j .

(2.4)

This is a quadratic objective function. By Theorem 2.14, convexity follows by showing that the matrix
Q = A⊤A is positive semidefinite, which is an easy exercise to check.

Orthogonal projection viewpoint A geometric interpretation can be given as follows. For any
β ∈ R

n+1, the predicted values are given by the vector Aβ ∈ R
m; taken over all β ∈ R

n+1, these form
a linear subspace L ⊆ R

m. The objective function in (2.3) can be written as the squared distance of
the vectors Aβ and b:

‖Aβ − b‖2 ,

which is exactly the nearest point to b in L; in other words, the orthogonal projection ΠL(b).

Explicit solution The convex optimization problem (2.3) is very simple: in contrast to most prob-
lems we will encounter in this course, an optimal solution can be explicitly computed using basic matrix
algebra. From the above viewpoint, this amounts to computing the projection matrix ΠL.

We can use Theorem 2.9 asserting that β is an optimal solution to minimizing f(β) over β ∈ R
n+1

if and only if ∇f(β) = 0. Using (2.4), the gradient of the squared loss objective function in (2.3) can
be written as

2A⊤Aβ − 2A⊤b ,

hence, the optimal β has to be the solution to the system of linear equations

A⊤Aβ = A⊤b .

Let us first assume that the columns of the matrix A are linearly independent: there is no predictor
variable that can be written as the exact linear combination of other predictor variables (including the
bias). Under this assumption, the matrix A⊤A ∈ R

(n+1)×(n+1) is positive definite and consequently
invertible (check!). Then, one can write the optimal solution to (2.3) as

β̂ =
(

A⊤A
)−1

A⊤b . (2.5)

Without the independence assumption, A⊤A may not be invertible, and in fact the minimum-norm
solution is not unique: we can have Aβ = Aβ′ for β 6= β′. The solution is then chosen as β̂ =
(

A⊤A
)†

Ab, where Q† denotes the pseudoinverse of the matrix Q; we do not discuss this here.

2.3.2 Regularisation: Lasso and Ridge regression

Least squares regression finds the model β̂ that gives the best fit for the given dataset on m points.
However, the usual goal in statistical learning is not finding the best model for a given set, but building
predictive models : given a data sample called the training set, we aim to find a model that gives the
best prediction on yet unseen data points. For this reason, optimizing for the training set may lead to
overfitting.

Ridge and Lasso regression are two regularised variants of the standard least squares regression
model that can give better predictions. The input is the same: a set of m data points (aj , bj), where
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aj ∈ R
n+1, bj ∈ R, and aj0 = 1 corresponds to the bias term. The model uses a parameter t > 0

min
m
∑

j=1

(〈aj , β〉 − bj)
2

n
∑

i=1

β2
i ≤ t .

(2.6)

That is, we add a bound on the ℓ2-norm of the vector (β1, . . . , βn); the limit t = ∞ corresponds to
ordinary least-squares regression. This limits the norm of the coefficients of the predictor variables;
note that the bias term β0 is not included. Hence, we obtain a more robust prediction; see [4, Section
6.2] for more statistical background and applications. The book defines the problem in a different
form; this will be discussed in the next chapter.

From our perspective, (2.6) adds a convex constraint to (2.3); this follows by the convexity of the
function

∑n
i=1 β

2
i . Hence, we obtain a constrained convex optimization problem.

More generally, every p-norm for p ≥ 1 is a convex function. Lasso regression (least absolute
shrinkage and selection operator) is the same as Ridge regression, but replaces the ℓ2-norm by ℓ1-
norm:

min

m
∑

j=1

(〈aj , β〉 − bj)
2

n
∑

i=1

|βi| ≤ t .

(2.7)

Despite the similar form, these can result in considerably different β solutions. An advantage of Lasso
is that it will typically use only a subset of the coefficients while setting the others to zero; in contrast,
Ridge regression typically uses all of them. Hence, Lasso can also be interpreted as a subset selection
method that identifies a relevant subset of the coefficients. To understand why this happens, let us
visualise the optimisation problems as in Figure 2.3. The red lines show the level sets of the objective
function. In case of Lasso, we are likely to hit the feasible polytope at a ‘corner’ (in general, a lower
dimensional face); this corresponds to setting some variables to 0.

Figure 2.3: Lasso (left) and Ridge (right) regression (source: [4, Figure 6.7]).

2.3.3 Logistic regression

The above regression models assumed that the target variable is a real value. This is not the case
for classification problems, where the target variable is in a discrete set of possible outcomes. The
simplest case is binary classification with target variable bj ∈ {0, 1}; these can be interpreted as
no/yes (negative/positive, etc.). Similarly to linear regression, we assume that the predictor variables
(aj1, . . . , ajn) ∈ R

n are continuous. We could apply linear regression for the data points (aj , bj), but
the predicted outcome for a new data point could be any real number, e.g. negative or greater than 1.
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Logistic regression is a standard model that outputs values between 0 and 1; this can be interpreted
as a probabilistic outcome. Similarly to linear regression, the model is defined by an n+1 dimensional
vector (β0, β1, . . . , βn), and we again extend the data points by a coordinate aj0 = 1 to account for the
bias term; we let aj = (aj0, aj1, . . . , ajn) ∈ R

n+1. We use logistic function to map the linear outcome
〈aj , β〉 to a value in [0, 1]:

pβ(aj) =
1

1 + e−〈aj ,β〉
.

Logistic regression can be derived as a maximum likelihood estimation. Given the feature vectors aj ,
j = 1, . . . ,m, assume that each target value bj ∈ {0, 1} is sampled according to the probabilies pβ(aj)
for a given coefficients β ∈ R

n+1. That is, with probability pβ(aj), we set b′j = 1, and with probability
1 − pβ(aj), we set b′j = 0. Then, the probability of getting the true target values bj = b′j is given by
the likelihood function:

ℓ(β) =
∏

j:bj=1

pβ(aj)
∏

j:bj=0

(1− pβ(aj)) .

Logistic regression selects β̂ as the optimal solution to

β̂ = max
β∈Rn+1

ℓ(β) . (2.8)

Since the log function is monotone on R>0, this is equivalent to maximising log ℓ(β) that is further
equivalent to minimising − log ℓ(β) that can be written as

− log ℓ(β) =
∑

j:bj=1

log
(

1 + e−〈aj ,β〉
)

+
∑

j:bj=0

log
(

1 + e〈aj ,β〉
)

.

In the exercises, we will show that this is a convex function. Hence, logistic regression can also be seen
as an unconstrained convex optimisation problem. However, in contrast to linear regression, there is
no simple closed form for the optimal solution, and one needs to invoke convex optimisation algorithm
to find the (approximately) optimal coefficients.



Chapter 3

Lagrangian duality

3.1 The Lagrangian dual

Lagrangian The Lagrangian of problem (2.2) is the function L : Rn × R
m × R

k → R defined by

L(x, λ, ν) = f0(x) +

m
∑

i=1

λifi(x) +

k
∑

i=1

νihi(x) , (3.1)

where domL = D × R
m
+ × R

k. Here λ and ν are vectors of variables in R
m and R

n, respectively.
Variable λi is the Lagrange multiplier of constraint fi(x) ≤ 0 and are required to be nonnegative,
whereas νi is the Lagrange multiplier of constraint hi(x) = 0.

Lemma 3.1. For every feasible point x̄ for (2.2) and every (λ, ν) ∈ R
m × R

k, λ ≥ 0, we have that

L(x̄, λ, ν) ≤ f0(x̄) (3.2)

Proof. Since x̄ is feasible, it follows that fi(x̄) ≤ 0 and hi(x) = 0. Therefore

L(x̄, λ, ν) = f0(x̄) +
m
∑

i=1

λifi(x̄) +
k
∑

i=1

νihi(x̄) ≤ f0(x̄) ,

because λi ≥ 0 and thus λifi(x) ≤ 0 for i = 1, . . . ,m.

Lagrange dual function We define the Lagrange dual function g : Rm × R
k → R as

g(λ, ν) = inf
x∈D

L(x, λ, ν) . (3.3)

Recall that X ⊆ D is the feasible region of the problem. If we denote by p∗ the optimal value of
problem (2.2)—that is, p∗ = infx∈X f0(x)—it follows from (3.2) that, for all (λ, ν) ∈ R

m × R
k, λ ≥ 0,

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ inf
x∈X

L(x, λ, ν) ≤ inf
x∈X

f0(x) = p∗ . (3.4)

That is, for every choice of (λ, ν) ∈ R
m × R

k, λ ≥ 0, the value g(λ, ν) is a lower-bound on the
optimal value p∗.

Next we point out an interesting property of the Lagrange dual function g.

Lemma 3.2. The Lagrange dual function g is concave.

Proof. For every x ∈ D, the function θx : Rm
+ ×R

k → R defined by θx(λ, ν) = L(x, λ, ν) is affine, and
therefore concave. By definition,

g(λ, ν) = inf
x∈D

θx(λ, ν),

therefore g is the pointwise infimum of the family of concave functions {θx |x ∈ D}, and thus concave.
This follows since Proposition 2.5 is applicable to −g, showing that a function defined as the pointwise
supremum of convex functions is convex. Consequently, g is concave.

25
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Lagrangian dual problem As we have seen, for every λ ≥ 0 and ν ∈ R
k, the value g(λ, ν) provides

a lower bound to the optimal value of (2.2). The Lagrangian dual is the problem of finding the best
such lower bound. That is,

sup g(λ, ν)
s.t. λ ≥ 0

(λ, ν) ∈ dom g
(3.5)

By Lemma 3.2, the above problem is a convex optimization problem (because the constraints are
linear and the objective is to maximize a concave function). Note that this is the case even when the
primal problem (2.2) is not convex!

The following is an immediate consequence of (3.4).

Theorem 3.3 (Week Lagrangian Duality). Let p∗ be the optimal value of the primal problem (2.2),
and let d∗ be the optimal value of the dual problem (3.5). Then

d∗ ≤ p∗.

We call p∗−d∗ the duality gap of problem (2.2). We discuss below that strong duality always holds
for linear programming (LP) problems, but not in general for convex problems.

Example 3.4. Consider the problem

min x2 + 1
(x− 2)(x− 4) ≤ 0

Note that it is a convex optimization problem, since both functions x 7→ x2+1 and x 7→ (x−2)(x−4)
are convex quadratic functions. Since both functions are defined over all of R, the domain of the
problem is D = R.

The feasible region is the interval [2, 4], and the minimum is attained at x∗ = 2, with optimal
objective value p∗ = 5.

The Lagrangian of the above problem is the function of two variables

L(x, λ) = x2 + 1 + λ(x− 2)(x− 4)

= (1 + λ)x2 − 6λx+ 8λ+ 1.

To compute the Lagrangian dual function, we need to compute, for all λ ∈ R,

g(λ) = inf
x∈R

L(x, λ) = inf
x∈R

(1 + λ)x2 − 6λx+ 8λ+ 1.

Observe that for λ ≤ −1 the above infimum is −∞. For λ > −1, the function (1+λ)x2−6λx+8λ+1
is a convex quadratic function, therefore its global minima in R are the points with zero derivative.
We compute the derivative of L(x, λ) with respect to x and set it to zero.

∂L(x, λ)

∂x
= 2(1 + λ)x− 6λ = 0.

The zero of the above equation is the point

x̄ =
3λ

1 + λ
,

thus, for all λ > −1,

g(λ) = L(x̄, λ) = (1 + λ)

(

3λ

1 + λ

)2

− 6λ
3λ

1 + λ
+ 8λ+ 1

=
−λ2 + 9λ+ 1

1 + λ
,
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and dom (g) = {λ ∈ R |λ > −1}. The Lagrangian dual is therefore

max
−λ2 + 9λ+ 1

1 + λ
s.t. λ ≥ 0

To solve the above, we compute the derivative of g and set it to zero

g′(λ) =
(−2λ+ 9)(1 + λ)− (−λ2 + 9λ+ 1)

(1 + λ)2

= −λ2 + 2λ− 8

(1 + λ)2
= 0

The only non-negative solution to the above equation is λ∗ = 2, which is therefore the dual optimal
solution. The optimal value of the dual is therefore d∗ = g(2) = 5. Note that in this case p∗ = d∗, thus
strong duality holds.

Example 3.5. Ridge regression Consider the Ridge regression problem in (2.6). The input is a
set of m data points (aj , bj), where aj ∈ R

n+1, bj ∈ R, and aj0 = 1; we let A ∈ R
m×(n+1) denote the

data matrix and b ∈ R
m the vector of target variables. We rewrite the norm constraint

∑n
i=1 β

2
i ≤ t

as
∑n

i=1 β
2
i − t ≤ 0 to get the desired form. Let J ∈ R

(n+1)×(n+1) denote the diagonal matrix with
J00 = 0 and Jii = 1 for i = 1, 2, . . . , n (that is, we replace the top left entry of the identity matrix by
0). Then, we can write

∑n
i=1 β

2
i = β⊤Jβ.

The Lagrangian is

L(β, λ) =
m
∑

j=1

(〈aj , β〉 − bj)
2+λ

(

n
∑

i=1

β2
i − t

)

= β⊤
(

A⊤A+ λJ
)

β−2
(

A⊤b
)⊤

β+
m
∑

j=1

b2j −λt . (3.6)

Let us compute g(λ) := infβ∈Rn+1 L(β, λ) for λ ≥ 0. For fixed nonnegative λ ≥ 0, L(β, λ) is a convex
function in β. The minimum is taken where the gradient (with respect to the β variables) is 0, that is,

2
(

A⊤A+ λJ
)

β − 2A⊤b = 0 ,

For λ > 0, the matrix A⊤A+ λJ is positive definite1 and thus invertible; hence, the optimal β vector
is

β =
(

A⊤A+ λJ
)−1

A⊤b . (3.7)

Thus, we can substitute

g(λ) = −b⊤A
(

A⊤A+ λJ
)−1

A⊤b− λt+
m
∑

j=1

b2j .

We do not solve the Lagrangian problem here. However, let us note that Ridge regression is commonly
defined in the Lagrangian form: instead of fixing the parameter t > 0, a parameter λ > 0 is selected,
and Ridge regression is defined as minimizing L(β, λ) for this fixed λ, with the closed form formula
(3.7).

We also note that there is a (nonlinear) 1-to-1 mapping between the parameters t ∈ R+ ∪{∞} and
the corresponding optimal λ ∈ R+ ∪ {∞} values. In particular, λ → 0 corresponds to t → ∞, and
λ→∞ corresponds to t→ 0.

Example 3.6. (Convex problem with strict duality gap) Consider the problem

p∗ = min e−x1

s.t.
x21
x2
≤ 0

1
this uses the fact that the first column of A is the all ones vector
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defined over D = {x ∈ R
2 |x2 > 0}. One can verify that this is a convex optimization problem.

Observe that the feasible region of the problem is the set X = {x ∈ R
2 |x1 = 0, x2 > 0}. In particular,

every feasible solution has objective value 1, therefore p∗ = 1.

Let us now compute the Lagrangian dual. The Lagrangian is L(x, λ) = e−x1 + λ
x2
1

x2
. We need to

compute g(λ) := infx∈D L(x, λ) for λ ≥ 0. Observe that L(x, λ) ≥ 0 for all x ∈ D and all λ ≥ 0,
therefore g(λ) ≥ 0. On the other hand, there are x ∈ D for which L(x, λ) takes arbitrarily small value

(it suffices to consider any sequence of points in D for which x1 → +∞ and
x2
1

x2
→ 0). If follows that

g(λ) = 0 for all λ ≥ 0, and therefore d∗ = 0. Thus the duality gap is p∗ − d∗ = 1− 0 = 1.

3.1.1 Duality for linear programming

Consider an LP problem of the form
min 〈c, x〉
s.t. Ax ≥ b

(3.8)

where c ∈ R
n, A ∈ R

m×n, b ∈ R
m. Rewriting the constraints in the form

b−Ax ≤ 0,

the Lagrangian of the above problem is

L(x, λ) = 〈c, x〉+ 〈λ, b−Ax〉 = 〈b, λ〉+
〈

c−A⊤λ, x
〉

,

where λ is a vector of m variables. Observe that L(x, λ) is an affine function in x, therefore it is either
a constant function or can go to −∞. Note that L(x, λ) is constant if and only if A⊤λ−c = 0, therefore
the Lagrangian dual function is

g(λ) = inf
x∈Rn

L(x, λ) =

{

〈b, λ〉 ifA⊤λ = c
−∞ otherwise.

It follows that the Lagrangian dual function is given by g(λ) = 〈b, λ〉, and it is defined over dom g =
{λ ∈ R

m |A⊤λ = c}. The Lagrangian dual of the LP function is therefore

max 〈b, λ〉
s.t. A⊤λ = c

λ ≥ 0.
(3.9)

This is the usual LP dual. Recall the strong duality theorem:

Theorem 3.7 (Strong duality theorem of linear programming). If both programs (3.8) and (3.9) are
feasible, then their optimum values are equal. The program (3.8) is unbounded if and only if (3.9) is
infeasible, and conversely, (3.9) is unbounded if and only if (3.8) is infeasible.

3.1.2 Slater’s condition

Despite cases in which convex optimization problems have positive duality gaps, such as the one in
Example 3.6, strong duality holds for convex optimization problems under fairly general conditions.

Definition 3.8 (Slater’s condition). We say that a convex optimization problem (2.2) satisfies Slater’s
condition if there exists a feasible solution x̄ in the interior of D such that fi(x̄) < 0 for i = 1, . . . ,m.

Theorem 3.9 (Strong duality under Slater’s condition). Strong duality holds for every convex op-
timization problem satisfying Slater condition. Furthermore, in this case the dual has an optimal
solution.

We do not present the proof of the above theorem here. Note that the Ridge regression satisfies
Slater’s condition, hence, strong duality follows. In contrast, the problem in Example 3.6 does not
satisfy Slater’s condition, because every feasible solution satisfies the only constraint of the problem
to equality.
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3.2 Karush-Kuhn-Tucker conditions

Consider a general problem (not necessarily convex) of the form (2.2), and assume that the functions
f0, f1, . . . , fm, h1, . . . , hk are differentiable.

Suppose that strong duality holds, and that both the primal and the dual problem admit an optimal
solution, say x∗ for the primal and (λ∗, ν∗) for the dual problem. It follows that

f0(x
∗) = g(λ∗, ν∗)

= inf
x∈D

L(x, λ∗, µ∗)

≤ L(x∗, λ∗, µ∗) (*)

= f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗) +
k
∑

i=1

ν∗i hi(x
∗)

≤ f0(x
∗) . (**)

This shows that equality must holds throughout in the above chain of inequalities. In particular,
inequality (*) implies

inf
x∈D

L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗).

That is, x∗ must be a global minimum for L(x, λ∗, µ∗). Since f0, f1, . . . , fm are differentiable, it
follows that L(x, λ∗, µ∗) is differentiable. By Theorem 1.17, it follows that the gradient of L(x, λ∗, µ∗)
computed at x∗ must be the zero vector. That is,

∇f0(x∗) +
m
∑

i=1

λ∗
i∇fi(x∗) +

k
∑

i=1

ν∗i∇hi(x∗) = 0. (3.11)

Inequality (**) must also be satisfied at equality. Observe that hi(x
∗) = 0, because x∗ is feasible, and

λ∗
i fi(x

∗) ≤ 0 because x∗ is feasible and λ∗ ≥ 0. Hence,

λ∗
i fi(x

∗) = 0, i = 1, . . . ,m. (3.12)

Equations (3.12) are called complementary slackness conditions. They state that, if an optimal primal
solution satisfies the ith constraint as strict inequality, then the corresponding dual variable λi should
be zero in an optimal dual solution.

We summarize the above discussion in the following statement.

Lemma 3.10. Let f0, f1, . . . , fm, h1, . . . , hk : Rn → R be differentiable functions. Assume that strong
duality holds for the optimization problem (2.2). If (2.2) admits an optimal solution x∗ and its dual
(3.5) admit an optimal solution (λ∗, ν∗), then these must satisfy the following conditions:

fi(x
∗) ≤ 0 (i = 1, . . . ,m)

hi(x
∗) = 0 (i = 1, . . . , k)

λ∗
i ≥ 0 (i = 1, . . . ,m) (3.13)

λ∗
i fi(x

∗) = 0 (i = 1, . . . ,m)

∇f0(x∗) +
m
∑

i=1

λ∗
i∇fi(x∗) +

k
∑

i=1

ν∗i∇hi(x∗) = 0.

These are known as the Karush–Kuhn–Tucker (KKT) conditions. Observe that the above result
only says that the KKT conditions are necessarily satisfied by every pair of optimal primal/dual
solutions (x∗, λ∗, ν∗) if strong duality holds. However, the next example illustrates that it is not true
in general that for every solution (x∗, λ∗, ν∗) to the KKT system the point x∗ is a primal optimum.

Example 3.11. Consider the (non-convex) optimization problem min{x3 |x2 ≤ 1}. Clearly, the only
optimal solution is x = −1, with value −1. The Lagrangian is L(x, λ) = x3+λ(x2− 1), thus the KKT
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conditions are

x2 − 1 ≤ 0

λ ≥ 0

λ(x2 − 1) = 0

3x2 + 2λx = 0.

The point (x∗, λ∗) = (0, 0) is a solution for the KKT conditions, but the point x∗ = 0 is not a primal
optimum (it has value 0, whereas the optimal value is −1).

For convex optimization problems, however, the KKT conditions are also sufficient, as shown in
the following theorem.

Theorem 3.12. Let f0, f1, . . . , fm be convex differentiable functions and h1, . . . , hk be affine func-
tions. If the KKT conditions for problem (2.2) have a solution (x∗, λ∗, ν∗), then x∗ is optimal for
problem (2.2), (λ∗, ν∗) is optimal for its dual (3.5), and strong duality holds.

Proof. Assume that (x∗, λ∗, ν∗) is a solution to the KKT conditions (3.13). In particular, x∗ is feasible
for (2.2) and λ∗ ≥ 0. Thus it suffices to show that f0(x

∗) ≤ g(λ∗, ν∗).
We only need to show that f0(x

∗) = g(λ∗, ν∗). We have

f0(x
∗) = f0(x

∗) +
m
∑

i=1

λ∗
i fi(x

∗) +
k
∑

i=1

ν∗i hi(x
∗)

= inf
x∈D

f0(x) +
m
∑

i=1

λ∗
i fi(x) +

k
∑

i=1

ν∗i hi(x)

= g(λ∗, ν∗).

The first equality follows from the fact that hi(x
∗) = 0 (i = 1, . . . , k) and λ∗fi(x∗) = 0 (i = 1, . . . ,m).

The second equality follows from Theorem 2.10, since the function L(x, λ∗, ν∗) is convex in x (because
f1, . . . , fm, h1, . . . , hk are convex), and its gradient at x∗ is zero (from condition (3.11)).

Example 3.13. Consider the problem

min 1
2x

⊤Px+ 〈q, x〉+ r
s.t. −1 ≤ xi ≤ 1 i = 1, 2, 3

where

P =





13 12 −2
12 17 6
−2 6 12



 , q =





−22
−29/2
13



 , r = 1.

We will show that the point x∗ = (1, 1/2,−1)⊤ is a global optimum.
The above is a convex optimization problem, because the constraint functions are affine, while the

objective function is convex quadratic (indeed, matrix P is positive semidefinite). To show that x∗ is
optimal, we will find a dual solution that satisfies the KKT conditions together with x∗.

The constraints of the problems can be written as −xi − 1 ≤ 0 and xi − 1 ≤ 0, i = 1, 2, 3. We
assign Lagrange multipliers λ0

i to constraint −xi − 1 ≤ 0, and λ0
i to constraint xi − 1 ≤ 0, i = 1, 2, 3.

We denote by λ0, λ1 the corresponding vectors. The Lagrangian is

L(x, λ0, λ1) =
1

2
x⊤Px+ q⊤x+ r +

3
∑

i=1

λ0
i (−xi − 1) +

3
∑

i=1

λ1
i (xi − 1).

Recall that the gradient of the objective function f at any given point x is

∇f(x) = Px+ q.
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Therefore, the KKT conditions are

−xi − 1 ≤ 0 i = 1, 2, 3

xi − 1 ≤ 0 i = 1, 2, 3

λ0, λ1 ≥ 0

λ0
i (−xi − 1) = 0 i = 1, 2, 3

λ1
i (xi − 1) = 0 i = 1, 2, 3

Px+ q − λ0 + λ1 = 0

Clearly −1 ≤ x∗i ≤ 1. Furthermore, from the complementary slackness conditions we get

x∗1 > −1 ⇒ λ0
1 = 0

−1 < x∗2 < 1 ⇒ λ0
2, λ

1
2 = 0

x∗3 < 1 ⇒ λ1
3 = 0

Finally, substituting x∗ into the last KKT equation and setting Lagrangian multiplier to zero as above,
we obtain

Px∗ + q − λ0 + λ1 =





−1
0
2



−





0
0
λ0
3



+





λ1
1

0
0



 = 0.

The only solution to the above system is λ0
3 = 2 ≥ 0, λ1

1 = 1 ≥ 0. It follows that x∗ is an optimal

primal solution. An optimal dual solution is defined by λ0 = (0, 0, 2)⊤ and λ1 = (1, 0, 0)⊤.

Example 3.14. (KKT conditions for an LP problem.) Consider again an LP problem of the form

min 〈c, x〉
s.t. Ax ≥ b ,

where c ∈ R
n, A ∈ R

m×n, b ∈ R
m. As before, the Lagrangian of the above problem is

L(x, λ) = 〈c, x〉+ 〈λ, b−Ax〉 = 〈b, λ〉+
〈

c−A⊤λ, x
〉

.

Thus
∇L(x, λ) = c−A⊤λ .

It follows that the KKT conditions are

Ax ≥ b

λ ≥ 0

(b− a⊤i x)λi = 0 i = 1, . . . ,m

A⊤λ = c

Thus the KKT conditions, when specialized to linear programming, enforce that x is a primal feasible
solution, λ is a dual feasible solution, and that x and λ are in complementary slackness. These are the
usual primal-dual slackness conditions for linear programming.



Chapter 4

Gradient descent

In this chapter, we start our journey on first order optimisation algorithms. We start with the simplest
case, unconstrained minimisation, that is, for a convex function f : Rn → R, we want to solve

min
x∈dom f

f(x).

Througout, we will assume that an optimal solution x∗ exists (recall that this may not always be the
case). We let p∗ = f(x∗) denote the optimum value. If there are multiple optimal solutions, we let x∗

denote an arbitrary one among them.

Let f : R
n → R be a differentiable function. According to Theorem 2.9, x∗ is a global minimum

point if and only if ∇f(x∗) = 0. Recall from Taylor expansion that the gradient ∇f(x) provides a
linear approximation of f around x. In particular, for a vector x ∈ dom f , direction ∆x, and step size
η > 0,

f(x+ η∆x) ≈ f(x) + η 〈∇f(x),∆x〉 (4.1)

Since we wish to decrease the function value, we need to select a direction ∆x such that 〈∇f(x),∆x〉 <
0. A natural choice is ∆x = −∇f(x), the direction opposite to the gradient. The basic gradient descent
method is as follows.

Gradient Descent

Input: A convex function f : Rn → R, a starting point x(0) ∈ dom f ,
and accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ dom f
Determine the number of iterations T and the step-size η > 0 based on
ε and other parameters.
For t = 0, 1, 2 . . . , T − 1 do

x(t+1) = x(t) − η∇f(x(t)) ;
Return x(out) = argmint f(x

(t))

A few remarks are in order:

• The way we determine the number of iterations is not specified here. It may depend on different
parameters of the function we will discuss later.

• The step-size η will also depend on different parameters. We note that there are also variants of
gradient descent that use varying step-sizes ηt.

• Ideally, gradient descent should produce a sequence of iterates with decreasing function values
f(x(t)) > f(x(t+1)). As we will see, this may not always be the case: we may ‘overshoot’ and use
a step-size η where the Taylor approximation (4.1) is no longer valid (that is, the second order
term overtakes the linear approximation). For this reason, the output solution may not be the
final iterate x(T ) but an earlier one.

32
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• The value f(x∗) is (in general) unknown. Hence, we cannot know a priori whether the current
iterate x(t) is an ε-approximate solution. We will see how, for an appropriate choice of T , we can
guarantee that one of the first T iterates includes an ε-approximate solution.

• The update rule may produce iterates x(t+1) outside dom f . We ignore this possibility and
assume all iterates fall inside dom f . This can be addressed as in Chapter 5 for constrained
optimisation.

Motivation for the gradient direction It turns out that the direction of −∇f(x(t)) corresponds
to a steepest descent direction in the standard Euclidean norm. Namely, let us consider any descent
direction v. In a small neighbourhood of x where (4.1) gives a good approximation, the rate of decrease
in the function value can be written as

f(x)− f(x+ ηv)

η
≈ f(x)− (f(x) + η 〈∇f(x), v〉)

η
= −〈∇f(x), v〉 .

For a consistent comparison, let us normalise the direction v as ‖v‖ = 1, and look for the direction
where the rate of decrease is the highest:

max
v∈Rn: ‖v‖=1

−〈∇f(x), v〉

By the Cauchy-Schwarz inequality (Theorem 1.1), −〈∇f(x), v〉 ≤ ‖∇f(x)‖ · ‖v‖ = ‖∇f(x)‖. Further,
the inequality is tight if and only if the two vectors are parallel, that is, v = λ(−∇f(x)) for λ > 0.
Thus, the optimal choice is v = −∇f(x)/‖∇f(x)‖, corresponding to the gradient descent direction.

4.1 Basic analysis

Let us know show a general bound on the average decrease in the f(x(t))−p∗ values for a given step-size
η > 0. We have ∇f(x(t)) = (x(t) − x(t+1))/η in each iteration. By the first order characterisation of
convexity (Theorem 2.10), we have

f(x(t))− p∗ ≤
〈

∇f(x(t)), x(t) − x∗
〉

=
1

η

〈

x(t) − x(t+1), x(t) − x∗
〉

(4.2)

We apply the cosine theorem: 2v⊤w = ‖v‖2 + ‖w‖2 − ‖v − w‖2 to the vectors v = x(t) − x(t+1) and
w = x(t) − x∗ to obtain

f(x(t))− p∗ ≤ 1

2η

(

∥

∥

∥
x(t+1) − x(t)

∥

∥

∥

2
+
∥

∥

∥
x(t) − x∗

∥

∥

∥

2
−
∥

∥

∥
x(t+1) − x∗

∥

∥

∥

2
)

=
η

2

∥

∥

∥
∇f(x(t))

∥

∥

∥

2
+

1

2η

(

∥

∥

∥
x(t) − x∗

∥

∥

∥

2
−
∥

∥

∥
x(t+1) − x∗

∥

∥

∥

2
) (4.3)

Let us now average these inequalities for t = 0, 1, . . . , T − 1. There is a telescoping sum cancelling out

most
∥

∥x(t) − x∗
∥

∥

2
terms:

1

T

T−1
∑

t=0

(

f(x(t))− p∗
)

≤ η

2T

T−1
∑

t=0

∥

∥

∥
∇f(x(t))

∥

∥

∥

2
+

1

2Tη

(

∥

∥

∥
x(0) − x∗

∥

∥

∥

2
−
∥

∥

∥
x(T ) − x∗

∥

∥

∥

2
)

≤ η

2T

T−1
∑

t=0

∥

∥

∥
∇f(x(t))

∥

∥

∥

2
+

1

2Tη

∥

∥

∥
x(0) − x∗

∥

∥

∥

2
.

(4.4)

Hence, we obtain an ε-approximate solution among the first T iterates whenever the left hand side
can be bounded by ε. In what follows, we formulate conditions on f and x(0) that enable such upper
bounds.
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4.2 Gradient descent for Lipschitz-continuous functions

Let us start with investigating a class of functions where (4.4) already gives a useful estimate. We
start by recalling the concept of Lipschitz-continuity.

Definition 4.1. A function f : Rn → R is Lipschitz-continuous with parameter L > 0, or L-Lipschitz
if for any x, y ∈ dom (f),

|f(x)− f(y)| ≤ L‖x− y‖ .

For differentiable functions, this can be equivalently characterised by bounded gradients:

Theorem 4.2. Let f : R
n → R be a differentiable function. Then, f is Lipschitz-continuous with

parameter L if and only if ‖∇f(x)‖ ≤ L for every x ∈ dom f .

Proof. Let us first show that every Lipschitz-continuous function has bounded gradients. Let us
consider the directional derivative at x in the direction v = ∇f(x), and use the Lipschitz-estimate
|f(x+ vt)− f(x)| ≤ L‖vt‖ = L|t|‖v‖:

‖∇f(x)‖2 = 〈∇f(x), v〉 = ∂f(x)

∂v
= lim

t→0

f(x+ vt)− f(x)

t
≤ lim

t→0

L|t|‖v‖
|t| = L‖v‖ = L‖∇f(x)‖ ,

implying ‖∇f(x)‖ ≤ L.

Conversely, assume ‖∇f(z)‖ ≤ L for every z ∈ dom f , and select any x, y ∈ dom f . We apply the
fundamental theorem of calculus (Theorem 1.13). Let us define g : [0, 1]→ R as g(t) = f(y+ t(x−y)).
Then,

|f(x)− f(y)| =
∣

∣

∣

∣

∫ 1

0
ġ(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0
〈∇f(y + t(x− y)), x− y〉 dt

∣

∣

∣

∣

≤ L‖x− y‖ .

We used Lemma 1.14(ii) in the second equation. We then used the Cauchy-Schwarz inequality and the
uniform bound on the gradient to show that |〈∇f(y + t(x− y)), x− y〉| ≤ L‖x− y‖.

For example, the function sin(t) is Lipschitz-continuous with constant L = 1, since its derivative
is | cos(t)| ≤ 1. However, the function f(t) = tα on the domain t ≥ 0 is only Lipschitz-continuous for
α = 1. If α > 1, then limt→∞ ḟ(t)→∞, and if α < 1, then limt→0 ḟ(t)→∞.

Let us analyse gradient descent with constant step-size η for a Lipschitz-continuous function with
parameter L. Continuing from (4.4), we obtain

1

T

T−1
∑

t=0

(

f(x(t))− p∗
)

≤ ηL2

2
+

1

2Tη

∥

∥

∥x(0) − x∗
∥

∥

∥

2
.

Assume further we have a bound R available such that
∥

∥x(0) − x∗
∥

∥ ≤ R. Then, the right hand side
can be bounded as

ηL2

2
+

R2

2Tη
.

For a given iteration number T , this expression is minimised by choosing

η =
R

L
√
T
.

For this choice, the bound becomes RL/
√
T . In order to guarantee a ε-approximate solution, we need

to pick T such that RL/
√
T ≤ ε, that is,

T ≥ R2L2

ε2
.

Thus, we have proved the following.
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Theorem 4.3. Let f : R
n → R be a Lipschitz-continuous and convex differentiable function with

Lipschitz-parameter L. Assume that a global minimum x∗ exists, and that ‖x(0) − x∗‖ ≤ R holds for
the initial point x(0). Then, for any ε > 0, gradient descent finds an ε-approximate solution within
T ≥ R2L2/ε2 iterations, using step-size η = R/(L

√
T ).

This gives our first running time bound on gradient descent. The applicability is limited, since
Lipschitz-continuity is a rather restrictive assumption. The quadratic dependence 1/ε2 on the desired
accuracy can be prohibitive even for small R and L values.

Note however that already this running time bound is independent on n, the dimension of the
problem. This is a crucial feature that allows gradient descent to be applied to high dimensional
problems.

Guessing the parameters Here, as well as in subsequent results, we use parameters such as R and
L. Such estimates may be available a priori, but can be difficult to obtain in many cases. In such
scenarios, we can run our algorithm with ‘guesses’ R̂ and L̂.

Assume we run the algorithm with a guess L̂ on L, initialised say as L̂ = 1. When running the
algorithm, we can check whether

∥

∥∇f(x(t))
∥

∥ ≤ L̂ holds in each iteration. If this is violated at any

point, then we can update L̂ to min{
∥

∥∇f(x(t))
∥

∥ , 2L}, and restart the algorithm. If the assumption

holds throughout, then the analysis remains valid with the value L̂ instead of L (even if the function
was not L-Lipschitz).

The estimate R̂ is not verifiable in a similar sense: the algorithm does not provide any evidence on
whether ‖x(0) − x∗‖ ≤ R̂.

4.3 Gradient descent for M-smooth functions

We now focus on another important family of functions, when the gradient (as an R
n → R

n function)
is Lipschitz-continuous.

Definition 4.4. A differentiable function f : Rn → R is M -smooth for a parameter M > 0 if for any
x, y ∈ dom (f),

‖∇f(x)−∇f(y)‖ ≤M‖x− y‖ . (4.5)

There are multiple ways to characterise M -smoothness. Part (ii) the analogue of Theorem 4.2.

Theorem 4.5. Let f : Rn → R be a differentiable function.

(i) f is M -smooth if and only if

|Df (x, y)| ≤
M

2
‖x− y‖2 ∀x, y ∈ dom f . (4.6)

(ii) If f is twice differentiable, then f is M -smooth if and only if

−MIn � ∇2f(z) �MIn ∀z ∈ dom f . (4.7)

Proof. Part (i): We only show the ‘only if’ direction. Assume f is M -smooth. We again use Theo-
rem 1.13 similarly as in the proof of Theorem 4.2. Let us define g : [0, 1]→ R as g(t) = f(y+ t(x−y)).

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉

=

∫ 1

0
ġ(t)dt− 〈∇f(y), x− y〉

=

∫ 1

0
〈∇f(y + t(x− y)), x− y〉 dt−

∫ 1

0
〈∇f(y), x− y〉 dt

=

∫ 1

0
〈∇f(y + t(x− y))−∇f(y), x− y〉 dt .
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Therefore, we can use the Cauchy-Schwarz inequality to bound

|Df (x, y)| ≤
∫ 1

0
‖∇f(y + t(x− y))−∇f(y)‖ · ‖x− y‖dt

≤
∫ 1

0
M‖t(x− y)‖ · ‖x− y‖dt

= M‖x− y‖2
∫ 1

0
tdt

=
M

2
‖x− y‖2 .

In the second inequality we used the definition of M -smoothness.

Part (ii) Here, we prove only the ‘if’ direction. According to part (i), it suffices to that (4.7) implies
(4.6). This follows easily from the Taylor-expansion: for any x, y ∈ dom f ,

Df (x, y) =
1

2
(x− y)⊤∇2f(z)(x− y)

for some point z ∈ [x, y]. By the definition of the semidefinite ordering �, condition (4.7) implies that

(x− y)⊤∇2f(z)(x− y) ≤ (x− y)⊤(MIn)(x− y) = M‖x− y‖2 .

Similarly, we get the lower bound

(x− y)⊤∇2f(z)(x− y) ≥ −M‖x− y‖2 .

Thus, |Df (x, y)| ≤ M
2 ‖x− y‖2 follows.

The L-Lipschitz and M -smoothness properties mutually do not imply each other. The function
f(t) = t2 on dom f = R is 2-smooth, but not Lipschitz for any constant. We will see in the exer-
cises that the converse direction is also not true: the L-Lipschitz property does not imply bounded
smoothness.

M-smoothness implies descent The variant of gradient descent for L-Lipschitz functions in Sec-
tion 4.2 is not a true descent method: f(x(t+1)) > f(x(t)) may be possible. In contrast, for M -smooth
functions we get a significant decrement for step-size η = 1/M .

Lemma 4.6. Let f : Rn → R be an M -smooth function. Using the step-size η = 1/M , the subsequent
iterates satisfy

f(x(t+1)) ≤ f(x(t))− 1

2M
‖∇f(x(t))‖2 . (4.8)

Proof. We first argue with an arbitrary step-size η > 0. Thus, x(t+1) − x(t) = −η∇f(x(t)). The
M -smoothness property gives

f(x(t+1)) = f(x(t)) +
〈

∇f(x(t)), x(t+1) − x(t)
〉

+Df (x
(t+1), x(t))

≤ f(x(t))− η‖∇f(x(t))‖2 + M

2
‖x(t+1) − x(t)‖2

= f(x(t)) +

(

Mη2

2
− η

)

‖∇f(x(t))‖2 .

We can see that the minimum of this expression is reached for the choice η = 1/M , leading to the
claimed bound.

This lemma, together with the analysis in Section 4.1, leads to the following theorem.
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Theorem 4.7. Let f : Rn → R be an M -smooth function. Assume that a global minimum x∗ exists,
and that ‖x(0) − x∗‖ ≤ R holds for the initial point x(0). Then, for any ε > 0, gradient descent finds
an ε-approximate solution x(T ) within T ≥MR2/(2ε) iterations, using step-size η = 1/M .

Proof. Let us substitute η = 1/M in (4.4); this gives

1

T

T−1
∑

t=0

(

f(x(t))− p∗
)

≤ 1

2MT

T−1
∑

t=0

∥

∥

∥∇f(x(t))
∥

∥

∥

2
+

M

2T

∥

∥

∥x(0) − x∗
∥

∥

∥

2
.

Summing up (4.8) for t = 0, 1, . . . , T − 1 and after cancellations, we obtain

1

2M

T−1
∑

t=0

∥

∥

∥
∇f(x(t))

∥

∥

∥

2
≤ f(x(0))− f(x(T )) .

Substituting, this leads to

1

T

T−1
∑

t=0

(

f(x(t))− p∗
)

≤ 1

T

(

f(x(0))− f(x(T ))
)

+
M

2T

∥

∥

∥x(0) − x∗
∥

∥

∥

2
.

By adding −p∗/T and p∗/T to the LHS,

1

T

T−1
∑

t=0

(

f(x(t))− p∗
)

≤ 1

T

(

(f(x(0))− p∗)− (f(x(T ))− p∗)
)

+
M

2T

∥

∥

∥
x(0) − x∗

∥

∥

∥

2
.

Moving the terms f(x(0))− p∗ and −(f(x(T ))− p∗) to the RHS, note that the index in the summation
changes from t = 0, . . . , T − 1 to t = 1, . . . , T . That is,

f(x(T ))− p∗ ≤ 1

T

T
∑

t=1

(

f(x(t))− p∗
)

≤ M

2T

∥

∥

∥x(0) − x∗
∥

∥

∥

2
≤ MR2

2T
,

where the first inequality follows by the descent property in Lemma 4.6, and the last inequality uses
the definition of R. Hence, if we select

T ≥ MR2

2ε
,

then f(x(T )) must be a ε-approximate solution.

This theorem has a much more favourable parameter dependence compared to Theorem 4.3.
Namely, the number of steps is proportional to 1/ε instead of 1/ε2. E.g. for ε = 0.01, this means a
hundred times fewer steps.

Smoothness on the sublevel set Theorem 4.7 assumes that f is M -smooth on its entire domain.
This assumption can be weakened. Consider the sublevel set defined by the initial point x(0):

S = {x ∈ dom f | f(x) ≤ f(x(0))}. (4.9)

For the arguments above, it suffices to require that f is M -smooth on the set S, that is, (4.5) holds for
points x, y ∈ S. This is again because of Lemma 4.6: that guarantees all iterates stay inside S (and
the proof of the lemma only uses (4.5) holds for points x, y ∈ S). Note that the convexity of f implies
that S is a convex set.
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4.3.1 Accelerated gradient descent

[Non examinable]

For M -smooth functions, gradient descent with step-length η = 1/M achieves a 1/ε-dependence
for finding a ε-accurate solution. This is not the best possible: Nesterov’s accelerated gradient descent
method improves this to 1/

√
ε-dependence. We do not cover this method in the course: the interested

readers may find a description, along with the explanation of the background, e.g. in [6, Chapter 8].

Interestingly, the 1/
√
ε-dependence turns out to be the best possible for a gradient method. Con-

sider any algorithm that satisfies the following general property. Starting form a given x(0), we always
pick

x(t+1) ∈ x(0) + span({∇f(x(0)),∇f(x(1)), . . . ,∇f(x(t))}) , (4.10)

that is, we are only allowed to move in the linear space spanned by the gradients seen thus far. This
is clearly the case for gradient descent, where we can write x(t+1) = x(0) − η

∑t
j=0∇f(x(j)).

Nemirovski and Yudin constructed a family of functions such that any algorithm that chooses
updates comforming (4.10) must take at least c

√
MR/

√
ε steps to obtain a ε-approximate solution for

some constant c > 0. Consequently, the accelerated gradient descent method is essentially the best
possible algorithm that uses only gradient information.

4.4 Gradient descent for well-conditioned functions

We next discuss variants of gradient descent that obtain a dramatically faster, log(1/ε)-dependence.
As noted above, this may not be possible for all M -smooth functions. We make another natural
assumption on strong convexity.

4.4.1 Strong convexity

Definition 4.8. Let m > 0. We say that the function f : Rn → R is strongly convex on a convex set
S with parameter m, if

Df (x, y) ≥
m

2
‖x− y‖2 ∀x, y ∈ S .

For S = dom f , we simply say that the function is strongly convex with parameter m.

Strong convexity thus gives the opposite bound as M -smoothness: it shows that the lower bound
f(y)− 〈∇f(y), x− y〉 is always strictly below f(x). Hence, affine functions f(x) = 〈w, x〉+ d are not
strongly convex for any m > 0. Analogously to Theorem 4.5, we can relate strong convexity to the
Hessian for twice differentiable functions.

Theorem 4.9. Let f : Rn → R be a twice differentiable function. Then f is m-strongly convex if and
only if

∇2f(z) � mIn ∀z ∈ dom f . (4.11)

The proof of the ‘if’ direction follows analogously to the proof of Theorem 4.5, using the Taylor
expansion.

An important property of strongly convex functions is that they have unique optimal solutions.

Proposition 4.10. If f is strongly convex and a local minimum exists, then there exists a unique global
minimiser.

Proof. Let x∗ be a local minimum and x ∈ dom f be an arbitrary point. Convexity already implies
that x∗ is a global minimum; we now argue for uniqueness. By the definition of strong convexity, for
any x 6= x∗ we obtain

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉+ m

2
‖x− x∗‖2 = f(x∗) +

m

2
‖x− x∗‖2 > f(x∗).

This completes the proof.
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Convex quadratic functions An important example is convex quadratic functions. Let f(x) =
x⊤Qx+ 〈p, x〉+ r; recall from Theorem 2.14 that f is convex if and only if Q is positive semidefinite.
Then, ∇f(x) = 2Qx + p, and the Hessian is ∇2f(x) = 2Q. Let λ1 ≥ 0 be the smallest eigenvalue of
Q. Then, v⊤Qv ≥ λ1‖v‖2 for any v ∈ R. Thus, if Q is positive definite, that is, if λ1 > 0, then f(x) is
strongly convex with m = 2λ1. If Q is positive semidefinite but not positive definite, then λ1 = 0 and
therefore the function is not strongly convex.

Bounding the distance from optimality

For arbitrary convex functions, we cannot determine whether our current solution is already near
the optimum. A significant advantage of strongly convex functions is that a small gradient ‖∇f(x)‖
indicates that f(x) is approximately optimal.

Proposition 4.11. Let f : R
n → R and x ∈ dom f , and let p∗ = f(x∗) denote the optimum value.

Assume f is strongly convex with parameter m on S = {z ∈ R
n : f(z) ≤ f(x)}. Then,

f(x)− p∗ ≤ 1

2m
‖∇f(x)‖2.

In particular, if ‖∇f(x)‖ ≤
√
2mε, then f(x)− p∗ ≤ ε.

Proof. The definition of strong convexity gives Df (z, x) ≥ m
2 ‖z − x‖2 for any z ∈ S, that is,

f(z) ≥ f(x) + 〈∇f(x), z − x〉+ m

2
‖z − x‖2. (4.12)

Let us consider the function g(z) = 〈∇f(x), z − x〉 + m
2 ‖z − x‖2 for the fixed x. This is a convex

quadratic function in z. The minimum is taken where the gradient is 0, which is at

0 = ∇g(z) = ∇f(x) +m(z − x).

Consequently, the minimiser of g(z) is z̃ = x − 1
m∇f(x), that is, for any z ∈ R

n, g(z) ≥ g(z̃) =
− 1

2m‖∇f(x)‖2. From (4.12), we obtain

f(z) ≥ f(x) + g(z) ≥ f(x)− 1

2m
‖∇f(x)‖2.

This holds true for any z ∈ S, in particular, for z = x∗, in which case we obtain the desired

p∗ ≥ f(x)− 1

2m
‖∇f(x)‖2. (4.13)

4.4.2 The condition number

Assume now that the function is m-strongly convex and M -smooth at the same time. Then, we have
that for every x ∈ S,

mIn � ∇2f(x) �MIn.

Thus, the eigenvalues of ∇2f(x) fall in the range [m,M ]. We call the ratio

κ =
M

m

the condition number of f . We will see that the convergence of gradient descent can be bounded in
terms of this condition number.
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4.4.3 Convergence analysis for bounded condition number

Let us apply gradient descent to a convex function f , starting with an initial point x(0) ∈ dom f .
Assume that the function is both m-strongly convex and M -smooth for 0 < m ≤ M on the sublevel
set

S = {x ∈ dom f | f(x) ≤ f(x(0))}.
We show that with step-length η = 1/M , the running time of gradient descent can be bounded in
terms of κ = M/m and log(1/ε).

We can apply Lemma 4.6 for M -smooth functions with step-length η = 1/M to obtain

f(x(t+1)) ≤ f(x(t))− 1

2M
‖∇f(x(t))‖2 .

Subtracting the optimum value p∗ from both sides, we see that

f(x(t+1))− p∗ ≤ f(x(t))− p∗ − 1

2M
‖∇f(x(t))‖2.

Using ‖∇f(x(t))‖2 ≥ 2m(f(x(t))− p∗) from Proposition 4.11, we get

f(x(t+1))− p∗ ≤
(

1− m

M

)

·
(

f(x(t))− p∗
)

.

Hence, the distance from optimality decreases by a factor 1 − m/M = 1 − 1/κ in every iteration.
Applying this argument at every iteration, we see that for every t ≥ 1,

f(x(t))− p∗ ≤
(

1− 1

κ

)t

·
(

f(x(0))− p∗
)

.

This shows that f(x(t)) converges quickly to p∗ as t→∞. We can also relate this to the bound R on
‖x(0) − x∗‖. We have

f(x(0))− p∗ =
〈

∇f(x∗), x(0) − x∗
〉

+Df (x
(0), x∗) ≤ 0 +

M

2
‖x(0) − x∗‖2 ≤ MR2

2
.

We can terminate once
(

1− 1

κ

)t

· MR2

2
≤ ε .

After taking logarithms, we get

t log

(

1− 1

κ

)

+ log

(

MR2

2ε

)

≤ 0 .

Rearranging,

log

(

MR2

2ε

)

≤ t log

(

1 +
1

κ− 1

)

Using the inequality log(1 + α) ≤ α for all α > −1, we obtain

(κ− 1) log

(

MR2

2ε

)

≤ t .

We have proved the following theorem.

Theorem 4.12. For f : R
n → R with starting point x(0) ∈ dom f , assume f is m-strongly convex

and M -smooth on the sublevel set S. Let κ = M/m > 1. Assume that ‖x(0) − x∗‖ ≤ R holds for the
initial point x(0) and the global optimum x∗. Then, gradient descent with step-length η = 1/M obtains
an ε-approximate solution x(T ) within

T ≤ (κ− 1) log

(

MR2

2ε

)

iterations.
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Compared to Theorem 4.7, note that we take the logarithm of the term MR2

2ε , giving a dramatically
better bound. However, the condition number κ could be potentially very large.

We also note that, in contrast to the previous variants, we do not necessarily need to perform the
number of iterations prescribed in the theorem. Proposition 4.11 gives a simple stopping criterion: we
can stop once ‖∇f(x(t)‖ ≤ 2mε for the first time.



Chapter 5

Gradient methods for constrained
optimisation

In this chapter, we consider the more general constrained optimisation setting. For a convex function
f : Rn → R, and a nonempty closed convex set K ⊆ dom f we aim to solve

min
x∈K

f(x). (5.1)

Again, we assume that an optimal solution x∗ ∈ K exists and let p∗ = f(x∗) denote the optimum
value.

We consider two fundamental approaches: the projected gradient method in Section 5.1 that adds
an additional projection step to gradient descent to force the iterates back to K; and the conditional
gradient method in Section 5.2 that uses gradients to find directions inside K.

5.1 Projected gradient method

The overall idea is simple: we run the standard gradient method, but whenever the next step would
go outside the feasible region K, we project it back to K. This is done using the projection mapping
introduced in Section 1.1.1 defined as

ΠK(x) = argmin
v∈K
‖x− v‖ .

We recall that for a nonempty closed convex K, there is a unique optimal solution, and ΠK(x) = x if
and only if x ∈ K.

Projected Gradient Descent

Input: A convex function f : Rn → R, a nonempty closed convex set
K ⊆ dom f , a starting point x(0) ∈ K, and accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ K
Determine the number of iterations T and the step-size η > 0 based on
ε and other parameters.
For t = 0, 1, 2 . . . , T − 1 do

y(t+1) = x(t) − η∇f(x(t)) ;
x(t+1) = ΠK(y(t+1)) ;

Return x(out) = argmint f(x
(t))

5.1.1 Properties of the projection map

Recall from the proof of Theorem 1.5 that projections give rise to separating hyperplanes. Let us now
state this property explicitly:

42
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Proposition 5.1. Let K ⊆ R
n be a nonempty closed convex set. For every y ∈ R

n and x ∈ K, we
have

〈y −ΠK(y), x−ΠK(y)〉 ≤ 0 .

Proof. If y ∈ K then ΠK(y) = y, and thus the statement holds trivially. For y /∈ K, this is shown as
(1.1) in the proof of Theorem 1.5.

Using this proposition, one can easily verify the following inequality. The geometric interpretation
is that the vectors y −ΠK(y) and x−ΠK(y) have an obtuse angle if y /∈ K, x ∈ K, see Figure 5.1.

Lemma 5.2. Let K ⊆ R
n be a nonempty closed convex set. For every y ∈ R

n and x ∈ K, we have

‖y −ΠK(y)‖2 + ‖x−ΠK(y)‖2 ≤ ‖x− y‖2 .

Proof. We apply the identity 2 〈u, v〉 = ‖u‖2+‖v‖2−‖u−v‖2 for u = y−ΠK(y) and v = x−ΠK(y).

x

y

ΠK(y)

K

Figure 5.1: The projection map

The algorithm requires a subroutine for computing ΠK(z). For general K, this is itself a con-
strained convex quadratic optimisation problem. Hence, conditional gradient can only be implemented
if minimising the quadratic objective ‖x− z‖2 over x ∈ K is inherently ‘simpler’ than minimising the
objective function f(x).

Example 5.3. Euclidean ball Let K = {x ∈ R
n : ‖x‖ ≤ 1} be the Euclidean ball of radius 1 around

the origin. Then, it is immediate that

ΠK(x) =

{

x if ‖x‖ ≤ 1 ,
x

‖x‖ if ‖x‖ > 1 .

Example 5.4. ℓ1-ball Let us now consider the ℓ1-ball K = {x ∈ R
n : ‖x‖1 ≤ 1}. Projection to this

set can also be computed using an explicit formula, but it is significantly more complicated than for
the ℓ2-ball. We write the formula here without the proof. It can be derived from the generalisation
of KKT conditions for subgradients. For a ∈ R, we use the notation a+ = max{a, 0} for the positive
part of a, and sign(a) ∈ {0,±1} to denote the sign of a.

If ‖x‖1 ≤ 1, then ΠK(x) = x. Otherwise, define the parameter λ ∈ R+ as the unique value such
that

n
∑

i=1

(|xi| − λ)+ = 1 . (5.2)
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Such a unique value exists since the left hand side is a continuous strictly monotone decreasing function
of λ on the interval (−∞, ‖x‖∞]. If ‖x‖1 > 1 then we must have λ > 0. To determine the value of λ
as in (5.2), let us reorder the indicies for a decreasing order |x1| ≥ |x2| ≥ . . . ≥ |xn|. For k = 1, 2, . . .,
compute qk = (

∑k
i=1 |xi| − 1)/k, and stop with the first k such that xk ≥ qk ≥ xk+1, or set k = n if

xn ≥ qn. We let λ = qk for this value.
For the value of λ satisfying (5.2), the projection will be y = ΠK(x) such that

yi = sign(yi)(|xi| − λ)+ .

Note that if xi < −λ, then yi = xi + λ, if xi ∈ [−λ, λ] then yi = 0, and if xi > λ then yi = xi − λ.

x

ΠK(x)

Figure 5.2: Projection to the ℓ1-ball

5.1.2 Basic analysis of the projected gradient method

Using Proposition 5.1 and Lemma 5.2, the analyses of the unconstrained cases in Chapter 4 can
be extended with some modifications. Let us revisit the basic analysis in Section 4.1. Using that
∇f(x(t)) = (x(t) − y(t+1))/η (with y(t+1) instead of x(t+1)), (4.2) becomes

f(x(t))− p∗ ≤
〈

∇f(x(t)), x(t) − x∗
〉

=
1

η

〈

x(t) − y(t+1), x(t) − x∗
〉

, (5.3)

and (4.3) becomes

f(x(t))− p∗ ≤ 1

2η

(

∥

∥

∥y(t+1) − x(t)
∥

∥

∥

2
+
∥

∥

∥x(t) − x∗
∥

∥

∥

2
−
∥

∥

∥y(t+1) − x∗
∥

∥

∥

2
)

=
η

2

∥

∥

∥∇f(x(t))
∥

∥

∥

2
+

1

2η

(

∥

∥

∥x(t) − x∗
∥

∥

∥

2
−
∥

∥

∥y(t+1) − x∗
∥

∥

∥

2
)

.

(5.4)

We now use Lemma 5.2 for y = y(t+1) and x = x∗, which gives

∥

∥

∥x(t+1) − x∗
∥

∥

∥

2
+
∥

∥

∥y(t+1) − x(t+1)
∥

∥

∥

2
≤
∥

∥

∥y(t+1) − x∗
∥

∥

∥

2
.

Therefore, the above can be further bounded as

f(x(t))− p∗ ≤ η

2

∥

∥

∥
∇f(x(t))

∥

∥

∥

2
+

1

2η

(

∥

∥

∥
x(t) − x∗

∥

∥

∥

2
−
∥

∥

∥
x(t+1) − x∗

∥

∥

∥

2
)

− 1

2η

∥

∥

∥
y(t+1) − x(t+1)

∥

∥

∥

2
, (5.5)

Averaging these inequalities, we obtain

1

T

T−1
∑

t=0

(

f(x(t))− p∗
)

≤ η

2T

T−1
∑

t=0

∥

∥

∥
∇f(x(t))

∥

∥

∥

2
+

1

2Tη

∥

∥

∥
x(0) − x∗

∥

∥

∥

2
− 1

2Tη

T−1
∑

t=0

∥

∥

∥
y(t+1) − x(t+1)

∥

∥

∥

2
. (5.6)
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This implies that the bound (4.4) remains valid even in the projected gradient setting!

We can immediately apply this to the setting when the function is Lipschitz-continuous inside K,
i.e., |f(x) − f(y)| ≤ L‖x − y‖ for any x, y ∈ K holds for some L > 0. As in Theorem 4.2, this is
equivalent to ‖∇f(x)‖ ≤ L for any x ∈ K.

Using (5.6) and ignoring the last term, the proof is identical to that of Theorem 4.3.

Theorem 5.5. Let f : R
n → R be a convex function and K ⊆ dom f a nonempty closed convex

set. Assume f is differentiable and has Lipschitz-parameter L on K. Assume that a global minimum
x∗ = argminx∈K f(x) exists, and that ‖x(0) − x∗‖ ≤ R holds for the initial point x(0). Then, for any
ε > 0, projected gradient descent finds an ε-approximate solution within T ≥ R2L2/ε2 iterations, using
step-size η = R/(L

√
T ).

5.1.3 Projected gradient method for M-smooth functions

Let us now assume that f is M -smooth on K, that is, ‖∇f(x)−∇f(y)‖ ≤M‖x− y‖ holds for every
x, y ∈ K. We revisit the analysis of Section 4.3. In place of Lemma 4.6, one can show the following
weaker bound that has an additional term. We will prove this as a class exercise.

Lemma 5.6. Let f : Rn → R be an M -smooth function. Using the step-size η = 1/M , the subsequent
iterates satisfy

f(x(t+1)) ≤ f(x(t))− 1

2M
‖∇f(x(t))‖2 + M

2
‖y(t+1) − x(t+1)‖2 . (5.7)

Note that, in contrast to unconstrained gradient descent, M -smoothness does not guarantee descent
for step-size η = 1/M . That is, f(x(t+1)) ≥ f(x(t)) may still be possible due to the second term.

Using this lemma together with (5.6), we obtain the generalisation of Theorem 4.7. The proof
is an immediate extension, noting that the additional term M

2T

∑T−1
t=0 ‖y(t+1) − x(t+1)‖2 is graciously

cancelled out in (5.6).

Theorem 5.7. Let f : Rn → R be an M -smooth function and K ⊆ dom f a nonempty closed convex
set. Assume that a global minimum x∗ = argminx∈K f(x) exists, and that ‖x(0) − x∗‖ ≤ R holds for
the initial point x(0) ∈ K. Then, for any ε > 0, projected gradient descent finds an ε-approximate
solution x(t) within T ≥ R2M/ε iterations, using step-size η = 1/M .

5.1.4 Projected gradient for well-conditioned functions

Let us now revisit the case of well-conditioned functions, i.e., functions that are both M -smooth and
strongly m-convex for some 0 < m < M ; we let κ = M/m. The analogue of Theorem 4.12 remains
true:

Theorem 5.8. Let f : R
n → R and K ⊆ dom f a nonempty closed convex set. Let us be given

a starting point x(0) ∈ K, and assume f is m-strongly convex and M -smooth on the sublevel set
S ∩ K. Assume that ‖x(0) − x∗‖ ≤ R holds for the initial point x(0) and the global optimum x∗ =
argminx∈K f(x). Then, projected gradient descent with step-size η = 1/M obtains an ε-approximate
solution x(T ) within

T ≤ (κ− 1) log

(

MR2

2ε

)

iterations.

However, the proof of Theorem 4.12 does not immediately extend. We do not prove this here,
just point out two critical points. First, Lemma 5.6 replaces Lemma 4.6, leading to a weaker bound.
Second, the stopping criterion implied by Proposition 4.11 is, while valid, insufficient. Since we have
a constrained optimisation problem, ∇f(x∗) is not necessarily 0, and near-optimal solutions do not
necessarily have a small gradient.
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5.2 Conditional gradient method

The main drawback of the projected gradient method is that we need to be able to compute the
projection map ΠK(x). This may be difficult unless the feasible set K is of a very simple form.

A different approach is the conditional gradient method, also called the Frank–Wolfe algorithm. The
algorithm remains inside K throughout, without the need for projections. We will assume that K is a
nonempty compact convex set, that is, we also assume K is bounded.

The Frank–Wolfe algorithm also requires a starting solution x(0) ∈ K. At each iteration t =
0, 1, 2, . . . , T − 1, we determine a search direction ∆(t) (which will be typically different from the
gradient), step-size ηt, and update

x(t+1) = x(t) + ηt∆
(t) .

In contrast to the previous methods, we typically use a varying step-size ηt that depends on the current
iteration. In order to decrease the function value, we need to move in a decreasing direction, that is,

〈

∇f(x(t)),∆(t)
〉

< 0.

Recall from Theorem 2.10 that x∗ ∈ K is a global minimum of f over K if and only if

〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ K .

Thus, if x(t) is not optimal, then there is a vector s ∈ K such that

〈

∇f(x(t)), s− x(k)
〉

< 0 .

Direction finding subroutine The Frank–Wolfe algorithm finds a search direction ∆(t) = s(t)−x(t),
where s(t) is obtained as an optimal solution to the problem

min
〈

∇f(x(t)), y
〉

s. t. y ∈ K .
(5.8)

By the assumption that K is compact, this problem admits an optimal solution. In case when x(t) is an
optimal solution to this problem, we conclude that x(t) is an optimal solution to the original problem,
as the optimality conditions are satisfied for x∗ = x(t). Otherwise, for the optimal solution s(t) ∈ K,
we have

〈

∇f(x(t)), s(t) − x(t)
〉

< 0. Thus, we can use s(t) − x(t) as the search direction.
Problem (5.8) is itself a constrained optimisation problem. However, the objective function is

linear, which makes the problem typically simpler than the original problem (5.1). The efficiency of
the Frank–Wolfe method crucially relies on the efficiency of the direction finding subroutine. If the
feasible region K is given by linear constraints, the direction finding subproblem amounts to solving a
linear program. Of course, solving an LP at every iteration may not be viable for practical purposes.

Example 5.9. As another example, consider the case when K is the ℓp-ball Bp(0, 1) = {x ∈ R
n :

‖x‖p ≤ 1} for some p ∈ [1,∞]. The solution easily follows from Hölder’s inequality, a generalisation of
the Cauchy–Schwarz inequality:

Theorem 5.10 (Hölder). Let p, q ∈ [1,∞] such that 1/p+ 1/q = 1. For x, y ∈ R
n, we have

n
∑

i=1

|xiyi| ≤ ‖x‖p · ‖y‖q .

Further, equality holds if and only if |x|p and |y|q are linearly dependent, that is, |x|p = α|y|q for some
α ∈ R.

(Here, |x|p refers to the vector in R
n with coordinates |xi|p.) Such p and q satisfying 1/p+1/q = 1

are called Hölder conjugates. Note that the case p = q = 2 recovers the Cauchy–Schwarz inequality.
Another fundamental case is p = 1, q =∞.
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Thus, (5.8) for K = Bp(0, 1) amounts to minimising 〈c, y〉 subject to ‖y‖p ≤ 1, where c = ∇f(x(t));
this is equivalent to maximising −〈c, y〉. Hölder’s inequality gives the upper bound

−〈c, y〉 ≤
n
∑

i=1

|ciyi| ≤ ‖c‖q · ‖y‖p ≤ ‖c‖q ,

where q is the Hölder conjugate of p. The first inequality is tight if ciyi ≤ 0 for all i = 1, 2, . . . , n, that
is, the two vectors have opposite signs on every component. Equality holds in the second inequality if
and only if |y|p and |c|q are linearly dependent. Using that q/p = q − 1 for conjugate pairs, this gives
|yi| = α|ci|q−1 for all i = 1, 2, . . . , n and α ∈ R

n. Finally, the third inequality is tight if and only if
‖y‖p = 1. This yields the choice α = 1/‖|c|q−1‖q. Putting this all together, the optimal solution can
be computed as

yi = −sign(ci)
|ci|q−1

(
∑n

i=1 |ci|q(q−1)
)1/q

.

Description of the algorithm The standard version of the algorithm uses step-size ηt = 2/(t+ 2)
in the t-th iteration.

Frank–Wolfe Algorithm

Input: A convex function f : Rn → R, a compact convex set K ⊆
dom f , a starting point x(0) ∈ K, and accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ K
Determine the number of iterations T and the step-size η > 0 based on
ε and other parameters.
For t = 0, 1, 2 . . . , T − 1 do

Call the Direction Finding Subroutine to compute
s(t) := argminy∈K

〈

∇f(x(t)), y
〉

;

∆(t) := s(t) − x(t) ; ηt :=
2

t+2 ;

x(t+1) = x(t) + ηt∆
(t) ;

Return x(out) = x(T )

5.2.1 Convergence analysis

Let us first verify that the algorithm indeed remains inside K throughout.

Lemma 5.11. For any step-size ηt ∈ [0, 1], we have x(t+1) ∈ K.

Proof. We can rewrite the update formula as x(t+1) = (1− ηt)x
(t) + ηts

(t). Thus, x(t+1) is on the line
segment [x(t), s(t)], which is entirely inside the convex set K.

Our next lemma shows that the search direction ∆(t) also provides a bound on the optimality gap.
value.

Lemma 5.12. Let x∗ be the optimal solution to minx∈K f(x) and p∗ = f(x∗). In each iteration of the
Frank–Wolfe algorithm,

f(x(t))− p∗ ≤ −
〈

∇f(x(t)),∆(t)
〉

.

Proof. Using convexity, we see that

p∗ = f(x∗) ≥ f(x(t)) +
〈

∇f(x(t)), x∗ − x(t)
〉

≥ f(x(t)) + min
y∈K

〈

∇f(x(t)), y − x(t)
〉

= f(x(t)) +
〈

∇f(x(t)), s(t) − x(t)
〉

= f(x(t)) +
〈

∇f(xt),∆(t)
〉

,

giving the desired bound.
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The above two statements are true for any step-size and for any convex differentiable f . We now
give the running time bound for M -smooth functions. Let D denote the diameter of K, that is,

D = max{‖x− y‖ : x, y ∈ K} .
This is closely related to the quantity R previously used; clearly, R ≤ D, and in most cases we we
would use the same estimates on R and D.

Lemma 5.13. Let f : Rn → R be M -smooth. In each iteration of the Frank–Wolfe algorithm,

f(x(t+1)) ≤ f(x(t)) + ηt

〈

∇f(x(t)),∆(t)
〉

+
η2tMD2

2
.

Proof. Recall that x(t+1) − x(t) = ηt∆
(t). According to M -smoothness,

f(x(t+1)) = f(x(t)) +
〈

∇f(x(t)), x(t+1) − x(t)
〉

+Df (x
(t+1), x(t))

≤ f(x(t)) +
〈

∇f(x(t)), x(t+1) − x(t)
〉

+
M

2

∥

∥

∥
x(t+1) − x(t)

∥

∥

∥

2

= f(x(t)) + ηt

〈

∇f(x(t)),∆(t)
〉

+
η2tM

2

∥

∥

∥
∆(t)

∥

∥

∥

2

≤ f(x(t)) + ηt

〈

∇f(x(t)),∆(t)
〉

+
η2tMD2

2
.

The last inequality uses that ∆(t) is the distance between two points in K, and hence, at most D.

Using Lemma 5.12 and Lemma 5.13, we can derive the overall convergence bound as follows:

Theorem 5.14. Let f : R
n → R be an M -smooth function and K ⊆ dom f a nonempty compact

convex set. Assume that the diameter of K is bounded by D. Then, for any ε > 0, the Frank–Wolfe
algorithm finds an ε-approximate solution x(t) within

T ≥ 2MD2

ε
− 2

iterations, using step-size ηt = 2/(t+ 2).

Proof. Let ht = f(x(t))−p∗ denote the optimality gap. Thus, we can write Lemma 5.12 as
〈

∇f(x(t)),∆(t)
〉

≤
−ht, and Lemma 5.13 implies

ht+1 ≤ ht + ηt

〈

∇f(x(t)),∆(t)
〉

+
η2tMD2

2
.

Putting these together, we get

ht+1 ≤ (1− ηt)ht +
η2tMD2

2
. (5.9)

The statement of the theorem can be equivalently written as

ht ≤
2MD2

t+ 2
. (5.10)

We prove this by induction for any t ≥ 1 using (5.9). The base case t = 1 follows by applying (5.9) for
t = 0, and noting that η0 = 1.

Assume (5.10) holds for t; we now prove it to t+ 1. From (5.9), we get

ht+1 ≤
(

1− 2

t+ 2

)

ht +
2MD2

(t+ 2)2

≤ t

t+ 2
· 2MD2

t+ 2
+

2MD2

(t+ 2)2

=
t+ 1

(t+ 2)2
· 2MD2

<
2MD2

t+ 3
.

completing the proof.



Chapter 6

Subgradient and stochastic gradient
methods

Algorithms in the previous two chapters were based on two crucial assumptions: (a) our convex function
f(x) is differentiable, and (b) we can easily compute the gradient ∇f(x). Both assumptions may be
violated in important practical scenarios. We may easily encounter non-differentiable functions such
as f(x) = max{0, 〈a, x〉+ b}; and the objective function may correspond to error minimisation over a
huge dataset in which case computing the gradient can require significant time.

In this chapter, we study methods that work without these assumptions: subgradient methods in
Section 6.1 and stochastic gradient descent in Section 6.2. For simplicity of exposition, we mainly focus
on the simplest unconstrained settings. In Section 6.1.3, we present the alternating projections method
and reveal its connection to subgradient descent. In Section 6.3, we present support vector machines
where the two phenomena naturally occur together.

6.1 Subgradient methods

A common example of a non-differentiable convex function is the univariate f(x) = |x|. More generally,
functions f : R

n → R of the form f(x) = maxi∈I 〈ai, x〉 + bi, i.e. the pointwise maximum of a finite
set of affine functions will be non-differentiable at points where the maximum is taken for multiple
indices.

These functions are differentiable in “most” points. This can be stated more formally. Let us
start with a univariate convex function f : R → R. Then, one can show (see class exercises) that
left and right derivatives f ′

−(x) and f ′
+(x) exist at every x ∈ R, and these are monotone increasing

functions. Further, f is non-differentiable at x if and only if f ′
−(x) < f ′

+(x). This immediately shows
that there can only be countable many points where f is not differentiable. A multivariate convex
function f : R

n → R is differentiable almost everywhere, meaning the set of points where f is not
differentiable has measure 0.

Nevertheless, points where the function is not differentiable can be critical for our optimisation
problem. The concept of subgradients can be motivated from the first order characterisation of con-
vexity (Theorem 2.6).

Definition 6.1. For a function f : Rn → R, the vector g ∈ R
n is a subgradient at x ∈ dom (f) if

f(y) ≥ f(x) + 〈g, y − x〉 ∀y ∈ dom (f) .

We let ∂f(x) ⊆ R
n denote the set of subgradients at x; this set is also called the subdifferential at x.

Note that the definition does not assume convexity of f . For a univariate convex function, ∂f(x) =
[f ′

−(x), f
′
+(x)]. For f(x) = |x|, we have ∂f(x) = {−1} if x < 0, ∂f(x) = {+1} if x > 0, and

∂f(0) = [−1, 1] (see Figure 6.1).
Let us now state the relationship between subgradients, differentiability, and convexity.

Theorem 6.2. For a function f : Rn → R, the following hold:

49



50 CHAPTER 6. SUBGRADIENT AND STOCHASTIC GRADIENT METHODS

f(x) = x

Figure 6.1: Subgradients of f(x) = x at x = 0

(a) If f is differentiable, then for every x ∈ dom (f), either ∂f(x) = {∇f(x)}, or ∂f(x) = ∅.

(b) f is convex if and only if ∂f(x) 6= ∅ for every x ∈ dom (f).

(c) A differentiable function f is convex if and only if ∂f(x) = {∇f(x)} for every x ∈ dom f .

Proof. [Non examinable]
Part (a): Assume for a contradiction that a subgradient g ∈ ∂f(x), g 6= ∇f(x) exists; let h =
∇f(x)− g.

We start by showing that 〈∇f(x), g〉 = ‖g‖2. Assume first that ‖g‖2−〈∇f(x), g〉 > 0. Recall from
the definition of differentiability (Definition 1.12) that if f is differentiable at x then for every δ > 0
there exists ε > 0 such that |f(z) − f(x) − 〈∇f(x), z − x〉 | < δ‖x − z‖ holds for every z ∈ R

n with
‖x− z‖ ≤ ε. Let us select a value δ > 0 such that

δ‖g‖ < ‖g‖2 − 〈∇f(x), g〉 ,

and pick ε > 0 for this choice. Let α > 0 such that α‖g‖ ≤ ε. Then, for z = x + αg we obtain a
contradicion from

f(x) + α 〈∇f(x), g〉+ δα‖g‖ > f(z) ≥ f(x) + α‖g‖2 > f(x) + α 〈∇f(x), g〉+ δα‖g‖ ,

where the first inequality holds by the choice of α and ε; the second by the definition of subgradients,
and the third uses the choice of δ. A similar argument works for the case when ‖g‖2− 〈∇f(x), g〉 < 0,
using α < 0.

Thus, we have shown that 〈∇f(x), g〉 = ‖g‖2, and therefore 〈g, h〉 = 0. Below, we will show that
〈∇f(x), h〉 = 0. Recalling that ∇f(x) = g+h, we get ‖h‖2 = 〈∇f(x)− g, h〉 = 〈∇f(x), h〉−〈g, h〉 = 0,
thus, h = 0. But this will contradict the choice g 6= ∇f(x).

Assume for a contradiction 〈∇f(x), h〉 6= 0; let us first assume 〈∇f(x), h〉 > 0. For a choice δ > 0
such that δ‖g‖ < 〈∇f(x), h〉, let us select the corresponding ε > 0, and let z = x − αh such that
α‖h‖ < ε, α > 0. Then, we get a contradition from

f(x) > f(x)− α 〈∇f(x), h〉+ δα‖g‖ > f(z) ≥ f(x)− α 〈g, h〉 = f(x) .

Here, the first inequality is by the choide of δ; the second by the choice of α and ε; the third by
the definition of subgradients, and the final equality uses 〈g, h〉 = 0 we have shown above. The case
〈∇f(x), h〉 < 0 follows similarly, using α < 0.

Part (b): Recall that convexity of f is equivalent to the epigraph being convex; this is the set
K = {(x, t) ∈ R

n+1 : x ∈ dom f, f(x) ≤ t}. For any x ∈ dom f , (x, f(x)) is on the boundary of K.
According to Theorem 1.5, there exist a supporting hyperplane of K at (x, f(x)). This can be written
as a vector (a, α) ∈ R

n+1, (a, α) 6= 0 such that

〈(a, α), (z, t)〉 ≥ 〈(a, α), (x, f(x))〉 ∀(z, t) ∈ K ,
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That is, for any point (z, t) such that z ∈ dom f , t ≥ f(z), we get

〈a, z〉+ αt ≥ 〈a, x〉+ αf(x) . (6.1)

Note that α < 0 is impossible, since the inequality must remain true by arbitrary increasing t. Further,
α 6= 0, as otherwise we must have 〈a, z〉 ≥ 〈a, x〉 for all z ∈ dom f , which implies a = 0, and hence
(a, α) = 0, a contradiction.

Consequently, α > 0. For g = −a/α, t = f(z), we can rewrite (6.1) as

f(z) ≥ f(x) + 〈g, z − x〉 ∀z ∈ dom f ,

that is, g ∈ ∂f(x) is a subgradient.

Part (c): This is immediate from the first two parts.

6.1.1 The subgradient descent algorithm

The subgradient descent method is an immediate extension of gradient descent: instead of using
gradients, in each iteration we pick a subgradient at the current point. We now present the algorithm
using iteration-dependent step-sizes ηt.

Subgradient Descent

Input: A convex function f : Rn → R, a starting point x(0) ∈ dom f ,
and accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ dom f
Determine the number of iterations T based on ε and other parameters.
For t = 0, 1, 2 . . . , T − 1 do

Select a subgradient g(t) ∈ ∂f(x(t)) ;
Determine the step-size ηt > 0 ;
x(t+1) = x(t) − ηtg

(t) ;
Return x(out) = argmint f(x

(t))

The basic analysis in Section 4.1 directly extends to replacing gradients by subgradients. In par-
ticular, (4.3) turns into

f(x(t))− p∗ ≤ ηt
2

∥

∥

∥
g(t)
∥

∥

∥

2
+

1

2ηt

(

∥

∥

∥
x(t) − x∗

∥

∥

∥

2
−
∥

∥

∥
x(t+1) − x∗

∥

∥

∥

2
)

. (6.2)

Using this, the analysis for Lipschitz-continuous functions directly extend. The following generali-
sation of Theorem 4.2 holds; we omit the proof.

Theorem 6.3. A function f : Rn → R is Lipschitz-continuous with parameter L if and only if ‖g‖ ≤ L
for every x ∈ dom f and every subgradient g ∈ ∂f(x).

The same argument used for Theorem 4.3 remains valid with g(t) in place of ∇f(x(t)) and leads to
the following.

Theorem 6.4. Let f : R
n → R be an L-Lipschitz-continuous convex function. Assume that a global

minimum x∗ exists, and that ‖x(0) − x∗‖ ≤ R holds for the initial point x(0). Then, for any ε > 0,
subgradient descent finds an ε-approximate solution within T ≥ R2L2/ε2 iterations, using step-size
η = R/(L

√
T ).

However, we note that there is no direct analogue of M -smoothness and Theorem 4.7 for subgradient
methods: analogouos requirements on subgradients would already imply differentiability.
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6.1.2 The Polyak-step-size

[Non examinable]

We now consider a natural subgradient descent method with varying step-size ηt; the same is of
course also applicable for gradient descent. The drawback of the fixed step-size η = R/(L

√
T ) is that

it depends on knowing (or guessing) the parameters R and L, and also committing to a number of
iterations T in advance.

Let us now consider a scenario where the optimum value p∗ = f(x∗) is known. This assumption
can be natural in certain cases, as we will see an example in the next section. Knowing p∗ gives an
obvious stopping criterion: terminate once an iterate with f(x(t)) ≤ p∗ + ε is found.

The Polyak-step-size at iteration t does not require knowledge of any parameters other than p∗. It
is defined as

ηt :=
f(x(t))− p∗

‖g(t)‖2 . (6.3)

The motivation comes from (6.2) that can be rewritten as

∥

∥

∥
x(t+1) − x∗

∥

∥

∥

2
≤
∥

∥

∥
x(t) − x∗

∥

∥

∥

2
+ ηt

2
∥

∥

∥
g(t)
∥

∥

∥

2
− 2ηt(f(x

(t))− p∗) . (6.4)

In order to minimise the distance
∥

∥x(t+1) − x∗
∥

∥, a natural idea is to minimise the value of the right
hand side. This is a convex function in ηt, and the minimum is taken precisely by choosing ηt according
to (6.3). With this choice, we obtain the bound

∥

∥

∥
x(t+1) − x∗

∥

∥

∥

2
≤
∥

∥

∥
x(t) − x∗

∥

∥

∥

2
−
(

f(x(t))− p∗
)2

∥

∥g(t)
∥

∥

2 . (6.5)

Adding together these inequalities for t = 0, 1, 2, . . . , T − 1, we get

∥

∥

∥x(T ) − x∗
∥

∥

∥

2
≤
∥

∥

∥x(0) − x∗
∥

∥

∥

2
−

T−1
∑

i=1

(

f(x(t))− p∗
)2

∥

∥g(t)
∥

∥

2 . (6.6)

We use this bound to prove the same convergence bound for Lipschitz-continuous functions as in
Theorem 6.4.

Theorem 6.5. Let f : R
n → R be an L-Lipschitz-continuous convex function. Assume that a global

minimum x∗ exists, and that ‖x(0)−x∗‖ ≤ R holds for the initial point x(0), and that the optimum value
p∗ is known. Then, for any ε > 0, subgradient descent with Polyak-step-sizes finds an ε-approximate
solution within T ≥ R2L2/ε2 iterations.

Proof. Rearranging (6.6), and using that
∥

∥g(t)
∥

∥ ≤ L by Theorem 6.3, we see that

1

L2

T−1
∑

i=1

(

f(x(t))− p∗
)2
≤
∥

∥

∥
x(0) − x∗

∥

∥

∥

2
−
∥

∥

∥
x(T ) − x∗

∥

∥

∥

2
.

using the definition of R and the nonnegativity of
∥

∥x(T ) − x∗
∥

∥ we get

1

T

T−1
∑

i=1

(

f(x(t))− p∗
)2
≤ R2L2

T
.

If the right hand side is at most ε2, then the smallest f(x(t)) value among the first T iterates is bounded
by p∗ + ε. Hence, we need to select T ≥ R2L2/ε2.

We note that there are variants of the Polyak-step-size (not covered here) that do not assume
knowledge of p∗.
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6.1.3 Alternating projections method

[Non examinable]
We now consider the classical alternating projections method that turn out to be a special case of

subgradient descent with Polyak-step-sizes.
Consider a convex feasibility problem where we are given m closed convex sets C1, C2, . . . , Cm ⊆ R

n,
and our goal is to find a feasible point in the intersection

K = C1 ∩ C2 ∩ . . . ∩ Cm .

We assume that all sets Ci are ‘simple’ in the sense that a fast method for computing the projection
mapping ΠCi

(y) for any point y ∈ R
n is available. (Recall the projection mapping from Section 1.1.1).

Throughout, we use dist(x,Ci) = ‖x−ΠCi
(x)‖ to denote the distance between x and Ci.

Despite the simplicity of the Ci’s, finding a point in the intersection may be significantly harder.
As a classical example, assume all Ci’s are half-spaces of the form Ci = {x ∈ R

n : 〈ai, x〉 ≤ bi}. Then,
finding a point in the intersection is the same as the linear programming feasibility problem.

For simplicity of exposition, we only consider here the case m = 2, i.e., the intersection of two
sets C1 ∩ C2. The alternating projections method starts with an initial point x(0). W.l.o.g. assume
x(0) /∈ C1; then, we determine x(1) = ΠC1(x

(0)). Now, x(1) ∈ C1, and if also x(2) ∈ C2, then we are
done. Otherwise, we next project to C2: x(2) = ΠC2(x

(1)). We continue with alternating projections
until we arrive at an iterate x(t) ∈ C1 ∩C2, or a required accuracy is reached: we are sufficiently close
to both sets. The algorithm is illustrated on Figure 6.1.3 for two circles.

In this context, we say that x(t) is a ε-approximate solution if the distance of x(t) from both C1

and C2 is at most ε. We note that this does not mean that x(t) is also within distance ε from the
intersection C1 ∩ C2 (see exercises).

Alternating projections

Input: Two closed convex sets C1, C2 ⊆ R
n, a starting solution x(0) ∈

R
n and accuracy requirement ε > 0.

Output: A solution x(out) ∈ dom f that is within distance ε from both
C1 and C2

t = 0 ;
While max{dist(x(t), C1), dist(x

(t), C2)} > ε do

If dist(x(t), C1) > dist(x(t), C2) then x(t+1) = ΠC1(x
(t)) ;

Else x(t+1) = ΠC2(x
(t)) ;

t = t+ 1 ;
Return x(out) = x(t)

x0

x1

x2x3

Figure 6.2: Alternating projection for two circles
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We now show that the alternating projections method can be interpreted as subgradient descent
for minimising the function f : Rn → R defined as

f(x) = max {dist(x,C1), dist(x,C2)} .

This is a convex function, since dist(x,Ci) is a convex function for any closed convex set Ci (see
exercises), and the maximum of two convex functions is convex. However, taking the maximum of two
differentiable convex functions is not anymore differentiable.

The minimum value of f(x) is 0 if and only if C1 ∩ C2 6= ∅, and every point in the intersection is
optimal. If the two sets are disjoint, then the optimum value is dist(C1, C2)/2.

Let us assume that the intersection is nonempty, in which case we know p∗ = 0. Thus, we can use
subgradient descent with Polyak-step-sizes. There is a natural choice of subgradients, as shown in the
next lemma.

Lemma 6.6. Assume that in the current iteration, f(x(t)) = dist(x(t), Ci) > 0 for i ∈ {1, 2}. Then,

g(t) :=
x(t) −ΠCi

(x(t))

‖x(t) −ΠCi
(x(t))‖

is a subgradient in ∂g(x(t)) and ‖g(t)‖ = 1.

The proof can be derived by showing that g(t) = ∇h(x(t)) for h(x) = dist(x,Ci). We now give a
direct proof using the definition of subgradients and Proposition 5.1.

Proof. The statement ‖g(t)‖ = 1 is immediate. We need to verify that for any y ∈ R
n,

f(y) ≥
〈

g(t), y − x(t)
〉

.

We can lower bound f(y) ≥ dist(y, Ci) = ‖y −ΠCi
(y)‖. Rearranging, it suffices to show

‖y −ΠCi
(y)‖ ·

∥

∥

∥
x(t) −ΠCi

(x(t))
∥

∥

∥
≥
〈

x(t) −ΠCi
(x(t)), y − x(t)

〉

.

Let us add
〈

x(t) −ΠCi
(x(t)), x(t) −ΠCi

(x(t))− y +ΠCi
(y)
〉

to both sides. Then, this is equivalent to

∥

∥

∥x(t) −ΠCi
(x(t))

∥

∥

∥

2
+ ‖y −ΠCi

(y)‖ ·
∥

∥

∥x(t) −ΠCi
(x(t))

∥

∥

∥−
〈

x(t) −ΠCi
(x(t)), y −ΠCi

(y)
〉

≥
〈

x(t) −ΠCi
(x(t)),ΠCi

(y)−ΠCi
(x(t))

〉

.

The left hand side is nonnegative by the Cauchy–Schwarz inequality, and the right hand side is non-
positive by Proposition 5.1, noting that ΠCi

(y) ∈ Ci.

Let us now consider the subgradient descent update for an iterate x(t) where

f(x(t)) = max{dist(x(t), C1), dist(x
(t), C2)} = dist(x(t), Ci)

with the subgradient g(t) as in Lemma 6.6 and the Polyak-step-size, recalling that p∗ = 0 by our
assumption C1 ∩C2 6= ∅. We have f(x(t))− p∗ = dist(x(t), Ci)− 0 = ‖x(t) −ΠCi

(x(t))‖ and ‖g(t)‖ = 1.
Thus,

x(t+1) = x(t) − ηtg
(t) = x(t) − ‖x(t) −ΠCi

(x(t))‖ x(t) −ΠCi
(x(t))

‖x(t) −ΠCi
(x(t))‖

= ΠCi
(x(t)) ,

confirming that the subgradient descent steps follow the same sequence of iterations as alternating
projection.

We can therefore use Theorem 6.5 to bound the number of iterations of the alternating projections
algorithm, with constant L = 1. Hence if C1 ∩ C2 6= ∅, then within R2/ε2 iterations we can obtain a
solution x(t) with max{dist(x(t), C1), dist(x

(t), C2)} ≤ ε.
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6.2 Stochastic gradient descent

Regression problems play a central role in machine learning. The general scheme (that includes linear
and logistic regression, and many more) involves a dataset of m data points with k dimensional feature
vectors ai ∈ R

k and dependent variables bj ∈ R. We have a parametric model that is described by a
parameter vector x ∈ R

n. The model is represented by a function F : R
k ×R

n → R such that F (a, x)
is the outcome for the feature vector a ∈ R

k with parameters x ∈ R
n. Further, we have a loss function

L : R
2 → R such that L(b, t) ≥ 0 is the penalty for the outcome t when the true dependent variable

is b; we have L(b, t) = 0 if b = t.

The objective function is then defined as f : Rn → R as

f(x) =
1

m

m
∑

j=1

L(bj , F (aj , x)) +R(x) , (6.7)

where R(x) : R
n → R is a convex regulariser function. The first term is the total loss (taking 0 if

F (aj , x) = bj for each data point), and the second term can express additional constraints on the
parameters 0, such as the penalties in the Ridge and Lasso regressions.

To simplify the notation, let fj(x) = L(bj , F (aj , x)) +R(x), that is,

f(x) =
1

m

m
∑

j=1

fj(x) .

Even if f(x) is differentiable, computing the gradient involves computing m gradients ∇fj(x) that
can be prohibitive for a large value of m.

Stochastic gradient descent (SGD) is a randomised algorithm that, at each iteration, picks an index
1 ≤ j ≤ m uniformly at random, and moves opposite the direction of

g(t) = ∇fj(x(t)) .

Stochastic Gradient Descent

Input: A differentiable convex function f : Rn → R, a starting point
x(0) ∈ dom f , and accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ dom f
Determine the number of iterations T and the step-size η > 0 based on
ε and other parameters.
For t = 0, 1, 2 . . . , T − 1 do

Select an index j ∈ {1, . . . ,m} uniformly at random ;
g(t) = ∇fj(x(t)) ;
x(t+1) = x(t) − ηg(t) ;

Return x(out) = argmint f(x
(t))

The algorithm itself is very similar to the standard gradient descent method. However, we have to
be more careful with the analysis, since all x(t) and g(t) vectors are random variables that depend on
the sequence of random choices. Overall, the algorithm makes Tm random decisions, which is a finite
(if astronomical) value. Let Ω denote the finite set of possible sequences {x(t) : t = 1, . . . , T} we may
encounter. (Having a finite domain simplifies the probabilistic arguments.) Before the analysis, we
recall some basic concepts from probability theory.

Review on conditional expectations Consider a finite probability space (Ω,P), where Ω is a finite
set, and P : 2Ω → [0, 1] is a probability function. An event is any subset A ⊆ Ω. For events A and B,
the conditional probability P (A|B) is defined as

P (A|B) =
P(A ∩B)

P(B)
.
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Let Y : Ω→ R
n be a (multi-valued) random variable. We let Y (Ω) ⊆ R

n denote the value range of Ω,
and we let Y = y denote the event {ω ∈ Ω : Y (ω) = y} Then, the expected value of Y is

E [Y ] =
∑

y∈Y (Ω)

y · P(y = Y ) ,

whereas the conditional expectation of Y over an event B is

E [Y |B] =
∑

y∈Y (Ω)

y · P (y = Y |B) .

The (conditional) expectation is well-known to be linear. For random variables Y1, . . . , Ym and coeffi-
cients λ1, λ2, . . . , λm, we have

E





m
∑

j=1

λjYj

∣

∣

∣

∣

∣

∣

B



 =
m
∑

j=1

λjE [Yj |B] .

6.2.1 Analysis of the stochastic gradient method

First, consider the conditional expectation of g(t), given a value x(t) = z (recall that x(t) is itself a
random variable). By linearity of conditional expectations,

E

[

g(t)
∣

∣

∣
x(t) = z

]

=
m
∑

j=1

1

m
∇fj(z) = ∇f(z) .

Hence, the expected value of the direction g(t) equals the gradient of the current iterate. The difficulty
arises since the sampled vector g(t) may not be a subgradient, thus, already the first step of the basic
analysis, (4.2) may fail: we don’t necessarily have

f(x(t))− p∗ ≤
〈

g(t), x(t) − x∗
〉

. (6.8)

Nevertheless, we show that this holds in expectation. Again by linearity,

E

[〈

g(t), x(t) − x∗
〉∣

∣

∣x(t) = z
]

= E

[〈

g(t), z − x∗
〉∣

∣

∣x(t) = z
]

=
〈

E

[

g(t)
∣

∣

∣x(t) = z
]

, z − x∗
〉

= 〈∇f(z), z − x∗〉 .

From here, we can derive the key equality

E

[〈

g(t), x(t) − x∗
〉]

= E [〈∇f(xt), xt − x∗〉] , (6.9)

by noting that both these expressions equal

∑

z∈x(t)(Ω)

〈∇f(z), z − x∗〉 · P[x(t) = z] .

From these arguments, we can recover the analogue of (4.2) in expectation:

E

[

f(x(t))
]

− p∗ ≤ E

[〈

g(t), x(t) − x∗
〉]

. (6.10)

Using this, we can recover all convergence bounds from Chapter 4 in expectation. We only state here
the bound analogous to Theorem 4.3. However, we need to modify the Lipschitz-condition that assumes
‖∇f(x)‖ ≤ L for all x ∈ dom f . Instead, we need to assume that E

[

‖g(t)‖2
]

≤ L2.
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Theorem 6.7. Let f : Rn → R be a differentiable convex function given in the form f = 1
m

∑m
i=1 fi.

Assume that a global minimum x∗ exists, and that ‖x(0) − x∗‖ ≤ R holds for the initial point x(0).
Further, assume that E

[

‖g(t)‖2
]

≤ L2 in the stochastic gradient descent method. Then, for any ε > 0,

in T ≥ R2L2/ε2 iterations, using step-size η = R/(L
√
T ), stochastic gradient descent finds a sequence

of solutions such that

1

T

T
∑

i=1

E

[

f(x(t))
]

≤ p∗ + ε .

Similar extensions can be given for the M -smooth and well-conditioned settings, as well as for
conditional stochastic gradient descent and stochastic subgradient descent.

6.2.2 Mini-batch stochastic gradient descent

We emphasise the probabilistic nature of the guarantee in Theorem 6.7: an actual run of the algorithm
may return a worse solution. A common approach to mitigate this is mini-batch SGD : take k > 1
samples g(t,ℓ), ℓ = 1, . . . , k, and use

g(t) =
1

k

k
∑

ℓ=1

g(t,ℓ) .

As usual, the variance of g(t) (conditioned on x(t)) is reduced by a factor k if estimating from k samples.

The k different gradients ∇fj(x(t)) can be computed in parallel. Hence, mini-batch SGD can be
implemented without increase in the computation time using a parallel architecture. Note that k is
typically still much smaller than m.

6.3 Support vector machines

We now review Support vector machines (SVM), a classical machine learning method that amounts to
an optimisation problem of the form (6.7) with a non-differentiable objective.

We consider a binary classification problem as in logistic regression (see Section 2.3.3). To simplify
the formalism, the target variable will be bj ∈ {+1,−1} instead of 0 and 1. The feature vectors are
aj ∈ R

n, j = 1, 2, . . . ,m, including the bias term 1 (thus, there are n− 1 features). Recall that logistic
regression returns a vector w ∈ R

n and probabilities

pw(aj) =
1

1 + e−〈aj ,w〉 .

Probability 1 would correspond to a certain +1 and probability 0 to a certain −1 answer (however, these
values cannot be taken). To turn logistic regression to a binary answer, we need a decision boundary.
For a fixed threshold γ ∈ (0, 1), say γ = 0.5, we return +1 if pw(aj) ≥ γ and −1 if pw(aj) < γ. The
inequality pw(aj) ≥ γ can be equivalently written as

〈aj , w〉 ≥ log
γ

1− γ
,

which corresponds to a linear half-space. The larger pw(aj) > γ, the further the point lies from the
boundary. The loss function in logistic regression is smaller the further we are on the (correct) side of
the decision boundary.

Support vector machines (SVM) give an alternative approach to finding a linear classification bound-
ary. Let P = {j ∈ [m] : bj = 1} and N = {j ∈ [m] : bj = −1} denote the parts of the dataset with
positive and negative target values. To motivate SVM, first assume there is a perfect linear separation
between the sets P and N . Such a separation would amount to a vector w ∈ R

n and δ ∈ R such that

〈aj , w〉 > δ ∀j ∈ P and 〈aj , w〉 < δ ∀j ∈ N .
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Recall that the dataset includes a bias term aj1 = 1; for this reason, we can assume without loss of
generality that δ = 0, by subtracting δ from w1. More concisely, we can write this as

bj 〈aj , w〉 > 0 ∀j = 1, 2, . . . ,m .

Hence, finding a perfect separation corresponds to a (strict) linear feasibility problem. If feasible, it
has infinitely many different solutions. The hard-margin support vector machine selects a separation
where the margin (the distance from the hyperplane on both sides) is as large as possible. This can be
obtained by the following nonlinear optimisation problem:

max M

subject to ‖w‖ = 1,

bj 〈aj , w〉 ≥M ∀j = 1, 2, . . . ,m .

(6.11)

The normalisation ‖w‖ = 1 ensures that for each data point j, the expression on the left hand side
measures the distance from the hyperplane. We now turn this into a convex quadratic optimisation
problem; the transformation amounts to replacing w by w/M . This second form is

min ‖w‖2
subject to bj 〈aj , w〉 ≥ 1 ∀j = 1, 2, . . . ,m .

(6.12)

Note that in case no perfect separation exists, this problem is infeasible. Even in case a separation
exists, the solution could be distorted by a few outliers. To get a more robust separation, we allow for
(but penalise) violation to the inequalities; this leads to the soft-margin support vector machine. If not
specified otherwise, SVM will refer to this variant.

Penalisation is done using the hinge loss function

L(bj , t) = max{0, 1− bjt} .

Thus, L(bj , 〈aj , w〉) > 0 if the corresponding inequality is violated, and in that case the loss function
measures the violation. In contrast to the logistic loss function, as long as bj 〈aj , w〉 ≥ 1, the loss is
zero. Hence, there is no additional reward for being outside this margin.

We are ready to formulate the soft-margin SVM optimisation problem. For a parameter λ > 0, we
have

min
1

m

m
∑

j=1

max{0, 1− bj 〈aj , w〉}+ λ‖w‖2 . (6.13)

This is an unconstrained optimisation problem with a nondifferentiable objective function. Note that
the distance of aj from the boundary hyperplane 〈w, x〉 = 0 is 〈w, aj〉 /‖w‖. Hence, the classifier has
a margin 1/‖w‖: points further than 1/‖w‖ have penalty 0, and points within this margin (or on the
wrong side) will be penalised; see Figure 6.3.

The parameter λ represents a ‘tolerance’ for errors: λ = 0 means that our only priority is avoiding
errors; the objective value 0 is attained for any perfect separation. In contrast, λ→∞ corresponds to
classifiers with larger margins but more violations.

The standard approach to solve SVM is stochastic subgradient descent. The loss function L(bj , 〈aj , w〉)
is ‖aj‖-Lipschitz; hence, the first term is 1

m

∑m
j=1 ‖aj‖-Lipschitz in expectation. The term λ‖w‖2 does

not have a bounded Lipschitz-constant on R
n, but has Lipschitz constant 2λR if restricted to a domain

‖w‖ ≤ R. A common improvement is to replace the hinge loss function by a smooth loss function that
leads to better convergence guarantees.

Support vectors Given an optimal solution to the support vector classifier, we can arbitrarily add
or remove points on the correct side at distance more than 1/‖w‖: the optimal solution remains
unchanged. The only “critical” instances are those within the margin or on the wrong side: these are
called the support vectors: these are the observations that will contribute to the separating hyperplane.

The motivation for the term and the distinguished role of support vectors can be understood
through the lens of Lagrangian duality; we will discuss this in more details in class.
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〈x,w〉 = 0

〈x,w〉 = −1

〈x,w〉 = +1

Figure 6.3: Support Vector Machines: The thick line is the classification boundary, the dashed lines
show the margins. Crosses denote +1 and circles −1 instances. The three support vectors on the
margin are shown in blue; the red instances are support vectors on the wrong side of the margin.



Chapter 7

Mirror descent

A salient feature of gradient methods is that the convergence guarantees do not depend on the dimen-
sion n of the space, just on parameters such as L or M , and R. However, these parameters may hide im-
plicit dependence on n. Consider a function f that is H-Lipschitz in ℓ1-norm: |f(x)−f(y)| ≤ H‖x−y‖1
for all x, y ∈ dom f , or equivalently (as we will shall see in Theorem 7.5), ‖∇f(x)‖∞ ≤ H for all
x ∈ dom f for a constant H. Since ‖z‖2 ≤

√
n‖z‖∞ for any z ∈ R

n, such a function is L-Lipschitz in
ℓ2-norm for L =

√
nH. Then, the standard gradient descent method finds a ε-approximate solution in

nH2R2/ε2 iterates, a bound that scales linearly with n.

The choice of the norm can thus greatly change the Lipschitz and smoothness properties; however,
standard gradient descent is geared for ℓ2-norms. In Section 7.1, we present mirror descent, a general-
isation of gradient descent, that allows for much additional flexibility and can be adapted for different
norms. We do not analyse the general method, but focus more closely on a particular instantiation,
exponentiated gradient descent in Section 7.2.

7.1 The mirror descent framework

As a motivation, let us revisit the proof of Lemma 4.6 that bounds the function value decrement in
gradient descent for M -smooth functions. The choice choice x(t+1) = x(t)− 1

M∇f(x(t)) can be justified
by bounding

f(x(t+1)) = f(x(t)) +
〈

∇f(x(t)), x(t+1) − x(t)
〉

+Df (x
(t+1), x(t))

≤ f(x(t)) +
〈

∇f(x(t)), x(t+1) − x(t)
〉

+
M

2
‖x(t+1) − x(t)‖2

Denoting v = x(t+1) − x(t), we can observe that v = − 1
M∇f(x(t)) is the minimizer of the convex

quadratic expression

min
v∈Rn

〈

∇f(x(t)), v
〉

+
M

2
‖v‖2 .

Noting that for Φ(x) = 1
2‖x‖2, the Bregman-divergence is DΦ(x, y) =

1
2‖x−y‖2, and setting η = 1/M ,

we can also write this as

x(t+1) = arg min
x∈dom f

〈

∇f(x(t)), x− x(t)
〉

+
1

η
DΦ(x, x

(t)) . (7.1)

The mirror-descent algorithm uses a mirror map Φ : Rn → R, a convex function that may be different
from the standard choice 1

2‖x‖2, and computes the updates using (7.1). We now describe it for
constrained convex minimisation, generalising the projected gradient method. When computing the
projection step, we pick the next iterate as the point x ∈ K that minimises the Bregman-divergence
DΦ(x, y

(t+1)). The Bregman-divergence plays the role of a distance, even though it is not a metric as
it is not symmetric.

60
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Mirror Descent

Input: A convex function f : Rn → R, a mirror map Φ : Rn → R a
nonempty closed convex set K ⊆ dom f , a starting point x(0) ∈ K, and
accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ K
Determine the number of iterations T and the step-size η > 0 based on
ε and other parameters.
For t = 0, 1, 2 . . . , T − 1 do

y(t+1) = argminy∈dom f

〈

∇f(x(t)), y − x(t)
〉

+ 1
ηDΦ(y, x

(t)) ;

x(t+1) = argminx∈K DΦ(x, y
(t+1)) ;

Return x(out) = argmint f(x
(t))

Note that in case the two functions coincide: f = Φ, then the solution of (7.1) for η = 1 gives
the optimal solution x(t+1) = x∗ in a single iteration, since the right hand side expression equals
f(x)− f(x(t)). The choice of the mirror map Φ needs to balance two requirements:

• First, one should be able to efficiently solve (7.1). Using Φ = f , this problem would be just as
hard as the original optimisation problem we are trying to solve.

• Second, DΦ(x, y) should be in some way related to Df (x, y) so that (7.1) is meaningful for
determining the next iterate. For example, in the case of M -smooth functions, Df (x, y) ≤
MDΦ(x, y) for Φ(x) = 1

2‖x‖2.

A sufficient condition for convergence is given in the next theorem; we do not include the proof.
Here, ‖.‖ denotes any norm instead of the usual ℓ2-norm.

Theorem 7.1. Let f : Rn → R be a convex function, K ⊆ dom f a convex set, and let x∗ be a
minimiser of f in K. Let Φ : R

n → R be a mirror map, and ‖.‖ : Rn → R a norm such that the
following are satisfied:

(i) dom f ⊆ domΦ and ∇Φ : domΦ→ R
n is a bijective map.

(ii) f is L-Lipschitz with respect to ‖.‖, that is, |f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ dom f .

(iii) Φ is σ-strongly convex with respect to ‖.‖ for some σ > 0, that is, DΦ(x, y) ≥ σ
2‖x− y‖2.

Then, for a suitably chosen step-size, Mirror Descent finds an ε-approximate solution if

T ≥ C · L
2DΦ(x

(0), x∗)
σε2

for some constant C > 0.

The first is a technical requirement asserting that every vector v ∈ R
n appears as v = ∇R(x) for

some x ∈ domΦ. E.g., for Φ(x) = 1
2‖x‖2, this holds because of ∇Φ(x) = x. For this choice of Φ

and for the Euclidean norm ‖.‖ = ‖.‖2, we have σ = 1 and recover the standard projected gradient
method for Lipschitz function as a special case as in Theorem 5.5. Note that DΦ(x, y) =

1
2‖x − y‖2,

and therefore DΦ(x
(0), x∗) ≤ 1

2R
2.

In case our function is L-Lipschitz not in ℓ2-norm but some different norm, one needs to find a
suitable mirror map Φ that is strongly convex in the same norm. We stress that a key requirement is
that we can efficiently compute the update defining y(t+1) that also depends on the choice of Φ. We
will an interesting example in Section 7.2. Before that, let us take a closer look at L-Lipschitzness in
different norms.
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7.1.1 Dual norms

To characterise L-Lipschitzness in an arbitrary norm ‖.‖, we introduce the notion of dual norms.

Definition 7.2. Given a norm ‖.‖ : Rn → R, the dual norm ‖.‖⋆ : Rn → R is defined as

‖v‖⋆ = sup{〈v, z〉 : z ∈ R
n, ‖z‖ ≤ 1} .

One can show that the dual of the dual norm is the original norm. An immediate corollary of
Hölder’s inequality (Theorem 5.10) provides the duals of ℓp-norms:

Lemma 7.3. Let p, q ∈ [1,∞] such that 1/p+ 1/q = 1. Then, ‖v‖⋆p = ‖v‖q.

This in particular tells us that the ℓ2-norm is its own dual norm, and ℓ1 and ℓ∞-norms are dual to
each other. The following generalisation of the Cauchy-Schwarz inequality follows from the definition
of dual norms.

Theorem 7.4. For any norm ‖.‖ and its dual norm ‖.‖⋆, we have

| 〈u, v〉 | ≤ ‖u‖ · ‖v‖⋆ .

Using this in place of the usual Cauchy-Schwarz inequality, the proof of Theorem 4.2 can be easily
extended to obtain the following bound for general norms.

Theorem 7.5. Let f : Rn → R be a differentiable function and ‖.‖ : Rn → R any norm. Then, f is
Lipschitz-continuous with parameter L in norm ‖.‖ if and only if ‖∇f(x)‖⋆ ≤ L for every x ∈ dom f .

7.2 Exponentiated gradient descent

We now describe a special instantiation of the mirror descent framework for the following natural
setting. Let

K = ∆n = {x ∈ R
n
+ :

∑

xi = 1}
be the probability simplex, i.e., the set of all discrete probability distributions over n elements. Our goal
is to compute minx∈∆n

f(x) for a convex function f : Rn → R with dom f ⊆ R
n
+ that is L-Lipschitz

on ∆n in ℓ1-norm; according to Theorem 7.5, this is equivalent to ‖∇f(x)‖∞ ≤ L for all x ∈ ∆n. A
suitable mirror map is the negative entropy function:

Φ(x) =
n
∑

i=1

xi log xi ,

defined on the domain domΦ = R
n
+; we use the convention 0 log 0 = 0 consistently with limt→0 t log t =

0. We have ∇Φ(x) = log(x) + 1n, where log(x) ∈ R
n denotes the vector with i-th component log xi,

and 1n is the n-dimensional all ones vector. Thus, ∇Φ is a bijection between domΦ and R
n, as

required in Theorem 7.1. The Bregman-divergence is

DΦ(x, y) =
n
∑

i=1

xi log

(

xi
yi

)

+
n
∑

i=1

(yi − xi)

In case x, y ∈ ∆n are probability distributions, the second sum is 0, and therefore DΦ(x, y) =
∑n

i=1 xi log
(

xi

yi

)

is the relative entropy, also called the Kullback-Leibler-divergence, or in short KL-

divergence. We state (without proof) the strong-convexity property in ℓ1-norm:

Theorem 7.6 (Pinsker’s inequality). For every two probability distributions x, y ∈ ∆n,

DΦ(x, y) ≥
1

2
‖x− y‖21 .
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We now explicitly compute the mirror descent updates for mirror descent using negative entropy as
the mirror map, also called the exponentiated gradient descent algorithm, and derive the convergence
bound for this case.

Lemma 7.7. For a given step-size η > 0 and using the negative entropy as the mirror map and for
g(t) = ∇f(x(t)), the mirror descent update is

y
(t+1)
i = x

(t)
i exp

(

−ηg(t)i

)

∀i = 1, 2, . . . , n and x(t+1) =
y(t+1)

‖y(t+1)‖1
.

Proof. The update rule can be written as

y(t+1) = arg min
y∈dom f

〈

g(t), y − x(t)
〉

+
1

η

n
∑

i=1

yi log

(

yi

x
(t)
i

)

−
n
∑

i=1

yi ,

x(t+1) = arg min
x∈∆n

DΦ(x, y) .

here, we simplified by removing the term
∑

i x
(t)
i in the first equation as it is always equal to 1. The

expression defining y(t+1) is convex in y; setting the gradient to 0 yields

log yi = −ηg(t)i + log x
(t)
i ∀i = 1, 2, . . . , n ,

giving the claimed expression on y.

Next, we need to find x ∈ ∆n that has minimal Bregman-divergence from y = y(t+1). Note that
y ≥ 0 and consequently ‖y‖1 =

∑n
i=1 yi. For the claimed x = y

‖y‖1 , we have

DΦ(x, y) = ‖y‖1 − 1 +
n
∑

i=1

yi
‖y‖1

log

(

1

‖y‖1

)

= ‖y‖1 − 1− log ‖y‖1 .

Using the convexity of h(t) = t log t, we show that this lower bound holds for every x ∈ ∆n. Indeed,
using the coefficients λi = yi/‖y‖1 that sum to 1,

DΦ(x, y) = ‖y‖1 − 1 + ‖y‖1
n
∑

i=1

yi
‖y‖1

· xi
yi

log

(

xi
yi

)

≥ ‖y‖1 − 1 + ‖y‖1
(

n
∑

i=1

yi
‖y‖1

· xi
yi

)

log

(

n
∑

i=1

yi
‖y‖1

· xi
yi

)

= ‖y‖1 − 1 + log

(

1

‖y‖1

)

= ‖y‖1 − 1− log ‖y‖1 ,
as required.

With these formulas, we can write Exponentiated Gradient Descent explicitly. The initial point
here is set to x(0) = 1

n1n.

Exponentiated Gradient Descent

Input: A convex function f : Rn → R and accuracy requirement ε > 0.
Output: A ε-approximate solution x(out) ∈ ∆n

Determine the number of iterations T and the step-size η > 0 based on
ε and other parameters.
x(0) = 1

n1n. For t = 0, 1, 2 . . . , T − 1 do

g(t) = ∇f(x(t)) ;

For i = 1, 2 . . . , n do y
(t+1)
i = x

(t)
i exp

(

−ηg(t)i

)

;

x(t+1) = y(t+1)

‖y(t+1)‖1 ;

Return x(out) = argmint f(x
(t))
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7.2.1 Analysis of the algorithm

We first show two lemmas on Bregman-divergences; these hold for general mirror maps Φ.

Lemma 7.8 (Law of cosines for Bregman-divergence). [Non examinable] For any convex function
Φ : Rn → R and any x, y, z ∈ domΦ, we have

〈∇Φ(y)−∇Φ(z), y − x〉 = DΦ(x, y) +DΦ(y, z)−DΦ(x, z)

The proof follows by substituting the definition of the three Bregman-divergences. For Φ(x) =
1
2‖x‖2 we have DΦ(x, y) =

1
2‖x− y‖2; the statement is equivalent to the law of cosines :

〈y − z, y − x〉 = 1

2

(

‖x− y‖2 + ‖y − z‖2 − ‖x− z‖2
)

.

We also state the next lemma for general Bregman-divergences and for the more general mirror descent
algorithm:

Lemma 7.9. [Non examinable] For any iterates y(t+t), x(t+1) of the mirror descent algorithm using
the mirror map Φ and for any z ∈ ∆n we have

DΦ(z, x
(t+1)) +DΦ(x

(t+1), y(t+1))−DΦ(z, y
(t+1)) ≤ 0 .

Proof. According to Lemma 7.8, the expression can be written as

〈

∇Φ(x(t+1))−∇Φ(y(t+1)), x(t+1) − z
〉

≤ 0 .

Recall that x(t+1) is defined as the minimiser of h(x) = DΦ(x, y
(t+1)) over x ∈ ∆n. Thus, from the

first order optimality condition,

〈

∇h(x(t+1)), x(t+1) − z
〉

≤ 0 .

The claim follows by observing that ∇h(x(t+1)) = ∇Φ(x(t+1))−∇Φ(y(t+1)).

We are ready to prove the running time bound.

Theorem 7.10. Let f : Rn → R be a convex function with ∆n ⊆ dom f . Assume f is differentiable
and ‖∇f(x)‖∞ ≤ L for all x ∈ ∆n. Let x∗ = argminx∈∆n

f(x). Then, starting from any x0 ∈ ∆n that
is strictly positive, and for any ε > 0, exponentiated gradient descent finds an ε-approximate solution
within

T ≥ 4.5
L2 log n

ε2

iterations, using step-size

η =

√
2 logn

L
√
T

.

Proof. [Non examinable]

We let p∗ = f(x∗) denote the optimum value, and start with the usual bound

f(x(t))− f(x∗) ≤
〈

g(t), x(t) − x∗
〉

(7.2)

Note that if the initial solution x(0) was nonzero on each coordinates, the update rules keep the same

property for all subsequent iterates. From the update rule y
(t+1)
i = x

(t)
i exp

(

−ηg(t)i

)

, and using that

x
(t)
i , y

(t+1)
i 6= 0, we get

g
(t)
i =

1

η
log

(

x
(t)
i

y
(t+1)
i

)

. (7.3)
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Thus,

η(f(x(t))− f(x∗)) ≤
n
∑

i=1

x
(t)
i log

(

x
(t)
i

y
(t+1)
i

)

−
n
∑

i=1

x∗i log

(

x
(t)
i

y
(t+1)
i

)

= DΦ(x
(t), y(t+1))−DΦ(x

∗, y(t+1)) +DΦ(x
∗, x(t)) ,

(7.4)

where the second line follows from simple calculation. (This can also be obtained from Lemma 7.8).
We will create a telescoping sum using the following bound.

Claim 7.11.

DΦ(x
(t), y(t+1))−DΦ(x

∗, y(t+1)) ≤ η
〈

g(t), x(t) − x(t+1)
〉

−DΦ(x
∗, x(t+1))−DΦ(x

(t+1), x(t)) .

Proof. Similarly to the previous argument with x(t+1) in place of x∗, using (7.3) we can write

η
〈

g(t), x(t) − x(t+1)
〉

=
n
∑

i=1

x
(t)
i log

(

x
(t)
i

y
(t+1)
i

)

−
n
∑

i=1

x(t+1) log

(

x
(t)
i

y
(t+1)
i

)

= DΦ(x
(t), y(t+1)) +DΦ(x

(t+1), x(t))−DΦ(x
(t+1), y(t+1)) .

Substituting this expression, the claim is equivalent to

−DΦ(x
∗, y(t+1)) ≤ −DΦ(x

(t+1), y(t+1))−DΦ(x
∗, x(t+1)) ,

which is equivalent to the expression in Lemma 7.9 with z = x∗.

Substituting the inequality in the claim to (7.4), we get

η(f(x(t))− f(x∗)) ≤ DΦ(x
(t), y(t+1))−DΦ(x

∗, y(t+1)) +DΦ(x
∗, x(t))

≤ DΦ(x
∗, x(t)) + η

〈

g(t), x(t) − x(t+1)
〉

−DΦ(x
∗, x(t+1))−DΦ(x

(t+1), x(t)) .
(7.5)

We can bound the scalar product term using Theorem 7.4 as

η
〈

g(t), x(t) − x(t+1)
〉

≤ η‖g(t)‖∞‖x(t) − x(t+1)‖1 ≤ ηL‖x(t) − x(t+1)‖1 ,

and we can lower bound DΦ(x
(t+1), x(t)) ≥ 1

2‖x(t) − x(t+1)‖21 from Pinsker’s inequality (Theorem 7.6).
Therefore,

η
〈

g(t), x(t) − x(t+1)
〉

−DΦ(x
(t+1), x(t)) ≤ ηL‖x(t) − x(t+1)‖1 −

1

2
‖x(t) − x(t+1)‖21 ≤

(ηL)2

2
,

where the last inequality uses that the function h(t) = ηLt− 1
2 t

2 is concave and is maximised at t = ηL.
Subsituting back to (7.5), the expression simplifies to

η(f(x(t))− f(x∗)) ≤ DΦ(x
∗, x(t))−DΦ(x

∗, x(t+1)) +
(ηL)2

2
. (7.6)

We are ready to telescope! Summing this for t = 0, 1, . . . , T − 1 and dividing by T/η, we get

1

T

T−1
∑

i=0

f(x(t))− f(x∗) ≤ 1

Tη
DΦ(x

∗, x(0)) +
ηL2

2
.

We can bound DΦ(x
∗, x(0)) ≤ logn, an upper bound on the KL-divergence using the choice x(0) = 1

n1n.
Hence, for a given T , we get the best bound for

η =

√
2 logn

L
√
T

,

giving

1

T

T−1
∑

i=0

f(x(t))− f(x∗) ≤ 3√
2
· L
√
log n√
T

.

This implies the claim.

We note that Theorem 7.1 on the general mirror descent method can be proved following the same
lines.



Chapter 8

Online convex optimisation

It the previous chapters, we considered full-information optimisation problems with the function and
constraints provided. We now make a detour to online convex optimisation that captures sequential
decisions with unknown future events. We refer the reader to Hazan’s book [3] for a comprehensive
treatment of this topic.

We start by describing a general model and some illustrative examples. We are given a time horizon
T ∈ N that is known in advance, and we need to make sequential decisions at time-steps t = 1, 2, . . . , T .
We are also given a set K ⊆ R

n that describes the set of possible decisions ; we will assume that this
set is convex. In time-step t, the decision maker needs to select a decision x(t) ∈ K. After this decision
is made, the cost-function f (t) : K → R is revealed, and the decision maker incurs a cost f (t)(x(t)).

A standard way to evaluate a sequence of decisions X = (x(1), x(2), . . . , x(t)) is to compare the total
cost to minimum total cost of any fixed decision z ∈ K. The difference is called the regret, and is
defined as

Regret(X) =
T
∑

t=1

f (t)(x(t))−min
z∈K

T
∑

t=1

f (t)(z) .

We will typically aim to bound the average regret, Regret(X)/T . Note that the regret may be negative.

The set of cost functions can be arbitrary : one can think of online optimisation as a game between
a decision maker and an adversary who sees all previous decisions and can come up with any malicious
cost function next.

The possible regret bounds necessarily depend on the magnitude of the functions f (t). As an
example, let K = [0, 1] and T ≥ 2. The player (decision maker) needs to pick some x(1) ∈ [0, 1].
If x(1) > 0.5, the adversary can come up with f (1)(x) = Lx, and if x(1) ≤ 0.5, they can select
f (1)(x) = L(1− x) for some large value L > 0. Assume all subsequent cost functions are the constant
f (t)(x) = 0. Thus, the regret of the sequence will be at least L/2.

Hence, we can only hope for meaningful regret bounds if our functions (as well as the decision set
K) are bounded.

Example 1: Expert advice Assume we need to make a sequence of T decisions with advice from
n available experts. However, we do not have any reliable a priori information on the skills and
trustworthiness of these experts. At each time-step, we need to pick an expert i and take an action

following their advice. Subsequently, we observe the outcome, and associate a cost g
(t)
j ∈ [0, 1] with

the advice of each expert j. That is, g
(t)
j = 0 means that expert j gave the perfect advice and g

(t)
j = 1

corresponds to the worst possible advice.

Instead of trusting a single expert and ignoring all others, we can associate probabilities with them:

let x
(t)
j be the probability of following expert j; x

(t)
j ≥ 0 and

∑n
j=1 x

(t)
j = 1, that is, x(t) ∈ ∆n, the

probability simplex. Then, the expected cost at time t is

f (t)(x) =
n
∑

j=1

x
(t)
j g

(t)
j =

〈

g(t), x(t)
〉

.
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Consider the overall regret

Regret(X) =

T
∑

t=1

〈

g(t), x(t)
〉

− min
z∈∆n

〈

T
∑

t=1

g(t), z

〉

.

Here, the optimal fixed combination z ∈ ∆n is the solution to a linear program. Recall that a linear
program over a bounded polyhedron always has a vertex optimal solution; in this case, it corresponds
to a vector ei that is 1 on expert i and 0 on all other experts. Hence, the regret compares the total
expected cost over T time-steps compared to following the advice of the best expert throughout. Note
that here, the best expert is defined as the one we can identify in hindsight with the best advice for
this particular sequence of decisions.

Example 2: Portfolio selection Assume an investor is distributing their wealth over n assets over

T months. They have an initial budget of B1 and initially invest q
(1)
j amount in asset j; they can

rebalance their budget Bt at the beginning of every subsequent month. During month t, the price of

asset j increases by a factor r
(t)
j (or decreases if r

(t)
j < 1).

Let us define x
(t)
j = q

(j)
j /Bt, i.e., the fraction of the current wealth invested in asset j. Thus,

x(t) ∈ ∆n. Then, we can see that

Bt+1 =
n
∑

j=1

r
(t)
j q

(t)
j = Bt

n
∑

j=1

r
(t)
j x

(t)
j = Bt

〈

r(t), x(t)
〉

.

Defining

f (t)(x(t)) = − log
(〈

r(t), x(t)
〉)

,

expresses log(Bt/Bt+1), the decrease in the value of the total portfolio (ideally, negative). For this
function,

Regret(X) = −
T
∑

t=1

log
〈

r(t), x(t)
〉

+ min
z∈∆n

T
∑

t=1

log
〈

r(t), z
〉

.

Here, the optimal z corresponds to the best possible fixed portfolio in hindsight, i.e., the best constant
rebalanced portfolio.

Example 3: Spam filtering Spam filtering is a prototypical example of online learning against
adversarial behaviour. We can think of it as a game between the system administrator and the spam-
mer. Emails arrive sequentially, and the system administrator can dynamically update the filtering
criteria on whether they are recognised as genuine emails or sent to the spam folder. The spammer
can (possibly) detect this information, and can tweak their emails so that they have a better chance
of getting through.

A common approach is to use a bag of words model: an email is represented as a vector u ∈ R
d,

where d is the size of the dictionary, and uj is the frequency of the occurrence of word j. The spam
filter is a parametric classification model (such as logistic regression or SVM) that, for a parameter
vector x ∈ R

n and vector u ∈ Rd representing an email, outputs the probability of u being spam as
Γ(x, u) ∈ [0, 1].

Consider now a sequence of messages u(1), u(2), . . . , u(t); let bt = 1 if the i-th message is a spam and
0 if not. The system administrator has to choose a parameter vector x(t); the choice may be restricted
to a convex set K such as an ℓp-ball of certain radius for some p ≥ 1. For a loss function L : R2 → R+,
the cost function at time-step t is

f (t)(x(t)) = L(bt,Γ(x
(t), u(t))) .

For this model, the regret compares the sequence of online decisions to the best possible performing
parameter choice for this set of emails in hindsight.
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8.1 Online gradient descent

A remarkable feature of the gradient descent method is that the basic analysis immediately extends
to the online setting. Assume we have a sequence of functions f (t), revealed after the iterate x(t)

was chosen. As we will see, we can still use (projected) gradient descent, moving in the direction
of −∇f (t)(x(t)). We now present the adaptation of the projected gradient descent method from Sec-
tion 5.1.

Online Gradient Descent

Input: A convex set K, the number of rounds T . The convex function
f (t) : K → R is revealed in round t after x(t) is chosen.
Output: A sequence (x(1), x(2), . . . , x(t))
Determine the step-size η > 0 based on T and other parameters.
Pick the initial x(1) ∈ K.
For t = 1, 2 . . . , T do

The cost f (t) is revealed ;
y(t+1) = x(t) − η∇f (t)(x(t)) ;
x(t+1) = ΠK(y(t+1)) ;

The crucial observation is that for any x∗ ∈ K, we can modify (5.3) to

f (t)(x(t))− f (t)(x∗) ≤
〈

∇f (t)(x(t)), x(t) − x∗
〉

=
1

η

〈

x(t) − y(t+1), x(t) − x∗
〉

, (8.1)

We follow the exact same steps as in Section 5.1.2 to obtain the following inequality in place of (5.6)
(after ignoring the last term):

1

T

T
∑

t=1

(

f (t)(x(t))− f (t)(x∗)
)

≤ η

2T

T
∑

t=1

∥

∥

∥
∇f (t)(x(t))

∥

∥

∥

2
+

1

2Tη

∥

∥

∥
x(0) − x∗

∥

∥

∥

2
. (8.2)

The left hand side is the regret against x∗; this can be chosen as any point in K. If we can bound
the right-hand side as ≤ ε for any x∗, then our online algorithm has average regret ≤ ε. Analogously
to Theorem 4.3 and Theorem 5.5, we get:

Theorem 8.1. Let K ⊆ R
n be a convex set with diameter at most R. Assume that the cost functions

f (t) : K → R revealed in the online optimisation algorithm are convex and differentiable, and have
Lipschitz-parameter L. Then, online gradient descent achieves average regret at most RL/

√
T over T

time-steps, using step-size η = R/(L
√
T ).

Given this connection, we can also adapt other gradient methods to the online setting: if our
functions are Lipschitz in a different norm, we can use online mirror descent with a suitable mirror
map. In what follows, we demonstrate this on the example of exponentiated gradient descent.

8.2 The multiplicative weights update method

Let us now consider the example on expert advice above: in time-steps t = 1, 2, . . . , T , the decision

maker associates probabilities x
(t)
j to n experts, and subsequently, the costs are revealed: the cost of

expert j’s advice is g
(t)
j ∈ [0, 1]. As noted, this corresponds to online learning with the functions

f (t)(x) =
〈

g(t), x(t)
〉

that are 1-Lipschitz in ℓ1-norm. Hence, the online version of exponentiated gradient is a natural choice
for this setting. In this context, it is called the Multiplicative Weights Update method or the Hedge
algorithm. We initialise with the uniform distribution x(1) = 1

n1n, and use the same updates as in
exponentiated gradient descent.
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Multiplicative Weights Update

Input: A vector g(t) ∈ [0, 1]n is revealed in round t after x(t) is chosen.
Output: A sequence (x(1), x(2), . . . , x(t))
Determine the step-size η > 0 based on T and other parameters.
Set the initial distribution x(1) = 1

n1n.
For t = 1, 2 . . . , T do

The vector g(t) is revealed ;

For i = 1, 2 . . . , n do y
(t+1)
i = x

(t)
i exp

(

−ηg(t)i

)

;

x(t+1) = y(t+1)

‖y(t+1)‖1 ;

Theorem 8.2. Assuming that the cost vectors g(t) are in [0, 1]n, the multiplicative weights method
achieves average regret at most

√

4.5 logn

T

using step-size η =
√

2 logn
T .

The proof directly follows from the analysis in Section 7.2.1. The derivation of (7.6) does not rely
on using the same function f in consecutive iterations. We could apply it for f (t)(x) =

〈

g(t), x
〉

and

the bound ‖g(t)‖∞ ≤ L = 1 to obtain

η
〈

g(t), x(t) − x∗
〉

≤ DΦ(x
∗, x(t))−DΦ(x

∗, x(t+1)) +
η2

2
. (8.3)

Moreover this is valid for any choice of x∗ ∈ K. Summing up, we obtain the desired regret bound.

Variants of the multiplicative weights update method are prevalent in optimisation and machine
learning. We briefly mention their importance in the context of ensemble learning. Given a regression
or classification problem, we can consider different algorithms as ‘experts’, and would like to identify
their most efficient combination. A particular variant, Adaboost can turn ‘weak learners’, methods that
do just marginally better than random guessing, into strong classifiers. This is achieved by iteratively
reweighting the dataset based on the success of the previous round, and training a new classifier on
the current weighted instance.

8.2.1 The Winnow algorithm

[Non examinable]

We now describe a direct application of the multiplicative weights update method to classification.
As in Section 2.3.3 for logistic regression and in Section 6.3 for support vector machines, we consider a
binary classification problem with m feature vectors aj ∈ R

n, j = 1, 2, . . . ,m, including the bias term
1 as aj1 = 1, and a target variable will be bj ∈ {+1,−1}. Perfect linear separation between the two
classes corresponds to a vector x ∈ R

n such that

bj 〈aj , x〉 > 0 ∀j = 1, 2, . . . ,m . (8.4)

The Winnow algorithm is a simple iterative method to find a perfect separation assuming one exists.
It is similar to the classical Perceptron algorithm. They maintain a current candidate separator x(t),
and update it every time they encounter a data point that is incorrectly classified by x(t).

We can consider different access models to the dataset: we can either scan through the dataset
in a fixed order repeatedly, or consider random samples arriving one-by-one. For certain structured
datasets, there might be a subroutine available for finding a misclassified data point. This flexible
access is an important feature of the Winnow and Perceptron algorithms. We can also think of them
as simple examples of reinforcement learning, where our method is dynamically updated based on the
success or failure.
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We now describe the Winnow algorithm for the setting where we are interested in a nonnegative
separator vector x ∈ R

n
+ satisfying (8.4). We will see in the exercises how this can be extended to the

general case where x may have arbitrary signs. If we assume x ∈ R
n
+, we can also normalise such that

x ∈ ∆n is a probability distribution. This follows by noting that (8.4) remains true when replacing a
feasible x by αx for any α > 0, and that ‖x‖1 6= 0 because x = 0 is not a feasible solution.

Similary, we can assume that all feature vectors aj are scaled such that ‖aj‖∞ ≤ 1, since scaling
does not affect the constraints in the separation problem, and aj 6= 0 since a bias term was included.

Winnow Algorithm

Input: A dataset of m vectors aj ∈ R
n, j = 1, 2, . . . ,m, ‖aj‖∞ = 1 and

bj ∈ {+1,−1}, step-size η > 0.
Output: A separator x(t) ∈ ∆n such that bj 〈aj , x〉 > 0 for all j =
1, 2, . . . ,m.
t = 1 ; x(1) = 1

n1n ;
Repeat

Scan through j = 1, 2, . . . ,m until bj
〈

aj , x
(t)
〉

≤ 0 is found
If such a j is found, then

For i = 1, 2 . . . , n do y
(t+1)
i = x

(t)
i exp (ηbjaji) ;

x(t+1) = y(t+1)

‖y(t+1)‖1 ;

t = t+ 1 ;
If no such j is found, then terminate by outputting x(t).

The Winnow algorithm can be seen an instantiation of the multiplicative weights method, where
the next loss vector g(t) is chosen as g(t) = −bjaj for a data point such that bj

〈

aj , x
(t)
〉

≤ 0. Note that

g
(t)
j ∈ [−1, 1] instead of [0, 1], but this does not affect the analysis that only uses ‖g(t)‖∞ ≤ 1.

The analysis reveals that as long as the data points are ‘well-separable’, i.e., if there exists a
separating hyperplane with a large enough margin, then the Winnow algorithm terminates with such
a hyperplane in a bounded number of iterations.

Theorem 8.3. Assume ‖aj‖∞ ≤ 1 for all j = 1, 2, . . . ,m and there exists a separator x∗ ∈ ∆n such
that bj 〈aj , x∗〉 ≥ ε for all j = 1, 2, . . . , n. Then, the Winnow algorithm terminates within

4.5 logn

ε2

iterations using step-size η = Cε for some constant C > 0.

Proof. As noted above, the Winnow algorithm can be seen as a special case of the multiplicative weights
update method. Assume it does not terminate for T > 4.5 logn

ε2
iterations, using the corresponding step-

size η. Then, the sequence of solutions must have average regret < ε over the first T iterations.
Recalling that g(t) = −bjaj for some 1 ≤ j ≤ m, we see that

〈

T
∑

j=1

g(t), x∗
〉

< −Tε .

Hence, one of the first T iterates x(t) must have
〈

g(t), x(t)
〉

< 0. However, we must have
〈

g(t), x(t)
〉

≥ 0

in every iteration by the very choice of g(t), a contradiction.



Chapter 9

Newton’s method

9.1 Root finding of univariate functions

The original version of the Newton method or Newton-Raphson method is for finding roots of differen-
tiable univariate functions f : R→ R. Given a starting point x(0) ∈ dom f , we compute iterates

x(t+1) = x(t) − f(x(t))

f ′(x(t))
t = 1, 2, . . . , T .

Geometrically, this amounts to following the tangent line of the graph of f(x) at x(t):

g(x) = f(x(t)) + f ′(x(t))(x− x(t)),

and computing the root of g(x) = 0. This is illustrated in Figure 9.1.

−1 1 2 3

−2

2

4
x(t)

x(t+1)

Clearly, this method may not always converge. E.g., if f ′(x(t)) = 0, then the update step is
undefined, and it can also be numerically unstable if |f ′(x(t))| is small.

Example 1: the Babylonian method A special case of Newton’s method for numerically approx-
imating squareroots has been used since ancient times. The Babylonian method or Heron’s method is
an iterative process for approximating

√
S for S > 0 using elementary arithmetic operations. Starting

from x(0) = S, the consecutive updates are

x(t+1) =
1

2

(

x(t) +
S

x(t)

)

.

This is identical to Newton’s method for the function

f(x) = x2 − S ,

71



72 CHAPTER 9. NEWTON’S METHOD

This function has two roots,
√
S and −

√
S. If x(t) >

√
S, then x(t+1) >

√
S follows from the inequality

of geometric and arithmetic means. Moreover, x(t+1) < x(t) also holds in this case since S/x(t) <
√
S.

Let us now show that starting with x(0) >
√
S converges to the positive root

√
S. (For any a > 0,

either a or S/a is a suitable starting point.) Let us define

δt =
x(t)√
S
− 1 .

Hence δ0 > 0, and the above argument shows that δt > 0 throughout. Elementary calculation shows

δt+1 =
δ2t

2(1 + δt)
.

From here, we see that

0 < δt+1 < min

{

δ2t
2
,
δt
2

}

. (9.1)

The second bound is stronger as long as δt ≥ 1; in this case, the error δt is at least halved in each
iteration. The first bound dominates for δt < 1.

The bound (9.1) does not only show that x(t) →
√
S, but reveals an interesting phenomenon. In

the first log2 δ0 iterations we reach δt < 1, at which point we turn to a higher speed and achieve much
faster, quadratic convergence. If δt < 2−p for p ≥ 0, then δt+1 < 2−2p−1. Hence, once we have δt < 1,
we will reach δT < ε in log2 log2(1/ε) iterations!

As we will see, this illustrates a general phenomenon for Newton’s method: once we are sufficiently
close to a root, the method converges extremely efficiently. At the same time, convergence can be
much slower or the method may not converge at all if starting further away from the optimum.

Example 2: cycling behaviour As already noted, Newton’s method breaks down if f ′(x(t)) = 0;
e.g., if we start with x(0) = 0 for the above example f(x) = x2 − S. Even if this is not the case,
convergence may not be guaranteed. Consider the function

f(x) = x3 − 2x+ 2 ,

and set the starting point as x(0) = 0. Then, x(1) = 1, x(2) = 0, and the method continues oscillating
between these two solutions; see Figure 9.1. Note that this function has a unique root at r ≈ −1.77,
and the first iteration start moving in the wrong direction, away from the root.

−2 −1 1 2

−2

2

4

x(0)

x(1)

r

9.1.1 Quadratic convergence of root finding

We now formulate a general condition that guarantees that, if starting sufficiently close to a root, then
Newton’s method converges quadratically.
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Theorem 9.1. Let f : R→ R be twice continuously differentiable, and let r be a root, that is, f(r) = 0,
and x(0) ∈ dom f a starting point. Let

G = sup

{∣

∣

∣

∣

f ′′(y)
2f ′(z)

∣

∣

∣

∣

: |r − y| ≤ |r − z| ≤ |r − x(0)|
}

, (9.2)

and assume G|r − x(0)| ≤ 1. Then,

|r − x(t+1)| ≤ G(r − x(t))2

holds at every iteration.

Before the proof, let us check the condition on f(x) = x2−S analysed above with r =
√
S. We have

f ′′(y)/(2f ′(z)) = 1/(2z). For |r−x(0)| = α, G is bounded if α < r, in which case G = 1/(2(r−α)). We
also need Gα < 1, or equivalently, α < 2

3r. Using the notation above with x(0) > α, this is equivalent
to δ0 < 2/3.

Proof. It suffices to show the statement for t = 0. Then, we obtain |r − x(1)| < |r − x(0)| from the
assumption G|r − x(0)| < 1. Let G′ be the quanity for x(1) instead of x(0); G′ ≤ G holds since the
constraint on y and z is more restrictive. We also have G′|r − x(1)| < 1. Thus, we can show the
statement for all values of t by induction.

The boundedness of G already implies f ′(x(0)) 6= 0; hence, the iteration is well-defined. We use a
second order Taylor expansion around x(0) (Theorem 1.15). We get

f(r) = f(x(0)) + f ′(x(0))(r − x(0)) +
1

2
f ′′(r̄)(r − x(0))2 ,

where r̄ is a value between x(0) and r. Substituting f(r) = 0 and f(x(0)) = f ′(x(0))(x(0) − x(1)) from
the update rule, this can be written as

f ′(x(0))(x(0) − x(1)) + f ′(x(0))(r − x(0)) +
1

2
f ′′(r̄)(r − x(0))2 = 0

which we rearrange as

x(1) − r =
f ′′(r̄)

2f ′(x(0))
(r − x(0))2 .

By the definition, G is an upper bound on the absolute value of the fraction, and therefore

|x(1) − r| ≤ G(r − x(0))2 ,

as required.

Let us now see how this theorem can be used to bound the number of steps to reach a certain
accuracy. Let αt = |r − x(t)|, and assume that for some ε > 0, we would like to bound the number of
iterates that guarantee αt ≤ ε. The theorem asserts that if Gα0 ≤ 1, then αt+1 ≤ Gα2

t . By induction,
it is easy to verify that for every t ≥ 1, we have

Gαt ≤ (Gα0)
2t .

Assume that we have the stronger bound Gα0 ≤ 1/2 on the starting solution (could use any constant
< 1). Then, it suffices to pick t such that

1

22t
≤ Gε ,

that is,

t ≥ log2 log2

(

1

Gε

)

.
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9.2 Newton’s method for optimisation

Consider now a global optimisation problem. In constrast to the previous chapters, we do not always
require convexity. We will however assume that the function f : Rn → R is twice differentiable. We
will focus on finding critical points, that is, points in dom f with

∇f(r) = 0 .

Recall that for convex functions, this is equivalent to global minimisation. For non-convex functions,
this could also be a local minimum/maximum or a saddle point.

9.2.1 The univariate case

In the univariate case, we can naturally apply Newton’s method for the function f ′(x). This yields
updates

x(t+1) = x(t) − f ′(x(t))

f ′′(x(t))
t = 1, 2, . . . , T ,

assuming the second derivative never vanishes. Observe that this corresponds to a gradient descent
iteration with varying step-size ηt = 1/f ′′(x(t)). In contrast to gradient descent, the step-size could
even be negative.

From here, we can further observe that if f(x) is convex, then the iteration is the optimal solution
to the following quadratic minimisation problem:

x(t+1) = argmin
x∈R

f(x(t)) + f ′(x(t))(x− x(t)) +
1

2
f ′′(x(t))(x− x(t))2 . (9.3)

In other words, we take the second-order Taylor expansion of f around x(t), and minimise this expres-
sion. Notice that in case f ′′(x(t)) = 0, this expression is unbounded. If f ′′(x(t)) < 0, then f is not
convex. In this case Newton’s method corresponds to finding a maximiser of the expression, also a
critical point.

9.2.2 Extension to higher dimensions

Consider now a twice differentiable function f : R
n → R. A natural idea is to extend (9.3) to higher

dimensions. Consider the second-order Taylor-expansion of f around x(t), namely,

f̂x(t)(x) = f(x(t)) +
〈

∇f(x(t)), x− x(t)
〉

+
1

2
(x− x(t))⊤∇2f(x(t))(x− x(t)) (9.4)

We pick the next iterate as the minimiser of this function.

x(t+1) = argmin
x∈R

f̂x(t)(x). (9.5)

To simplify the notation in this chapter we denote the Hessian as

Hf (x) = ∇2f(x) ,

or simply H(x) if f is clear from the context. We let H−1(x) = (∇2f(x))−1 denote the inverse of the
Hessian. Setting ∇f̂x(t)(x) = 0, we obtain the following natural generalisation of Newton’s method for
higher dimensions:

x(t+1) = x(t) −H−1(x(t))∇f(x(t)) . (9.6)

This expression is well defined as long as H(x(t)) is non-singular. Recall that for convex functions,
H(x(t)) is positive semidefinite. If f is not convex, then we can still use the iterates (9.6); the goal of
the algorithm is then finding a critical point of the expression in (9.5). For brevity, we denote

Nf (x) := −H−1(x)∇f(x) , (9.7)

or simply N(x) when clear from the context. With this notation, the updates of Newton’s method are

x(t+1) = x(t) +N(x(t)) .
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Convex quadratic functions Recall from Section 2.1.6 that a quadratic function is convex if and
only if it can be written in the form

f(x) =
1

2
x⊤Qx+ 〈p, x〉+ r ,

for a symmetric positive semidefinite function Q ∈ R
n×n and p ∈ R

n. The Newton updates are
undefined if Q is positive semidefinite but not positive definite, in which case Q−1 does not exist. Let
us now assume that Q ≻ 0, and thus, there exists a global minimiser x∗.

We have∇f(x) = p+Qx and H(x) = Q for every x ∈ R
n, and it is easy to verify that f̂x(t)(x) = f(x)

for every x(t) ∈ R
n. Consequently, already the first iteration of Newton’s method finds the exact global

minimiser: x(1) = x∗.
To verify this directly, we compute N(x) = −Q−1(Qx+p) = −x−Q−1p. Therefore, x(1) = −Q−1p

regardless of x(0); and this is the solution to ∇f(x) = 0. This argument remains valid even if f is not
convex.

9.3 Newton’s method as steepest descent in local norm

We now present another perspective on Newton’s method that reveals the connection to gradient
methods. Recall from Chapter 4 that gradient descent amounts to steepest descent in the Euclidean
norm: it uses the direction v = ∇f(x)/‖∇f(x)‖2 that maximises

max
v∈Rn: ‖v‖2≤1

−〈∇f(x), v〉 .

This scalar product corresponds to the directional derivative, that is, the decrement in direction v. We
normalise with ‖v‖2 ≤ 1 (which at an optimal solution must hold at equality) to get the decrement
rate measured in ℓ2-norm.

One could instead look at gradient descent for an arbitrary different norm ‖.‖, simply replacing
‖v‖2 ≤ 1 by ‖v‖ ≤ 1. Observe that the maximum decrease rate is by definition the dual norm
‖∇f(x)‖⋆.

Let f : R
n → R be a strongly convex and twice differentiable function; thus, H(x) ≻ 0 for every

x ∈ dom f . Newton’s method can be seen as a steepest descent algorithm that uses a varying norm
at each iteration. The local norm at x is defined as

‖v‖x :=
√

v⊤H(x)v .

Recall from the exercises that this is a norm since H(x) is assumed to be positive definite.

Proposition 9.2. For a strongly convex and twice differentiable function f : R
n → R, the unique

optimal solution to
max

v∈Rn: ‖v‖x≤1
−〈∇f(x), v〉 (9.8)

is

v∗ =
N(x)

‖N(x)‖x
,

the direction used by Newton’s method.

Proof. For the Newton step N(x) = −H−1(x)∇f(x) we have

−〈∇f(x), N(x)〉 = ∇f(x)⊤H−1(x)∇f(x) .
Further, (recalling that H(x) and therefore H−1(x) are symmetric), we have

‖H−1(x)∇f(x)‖x =
√

∇f(x)⊤H−1(x)H(x)H−1(x)∇f(x) =
√

∇f(x)⊤H−1(x)∇f(x) ,
thus,

−〈∇f(x), N(x)〉 =
√

∇f(x)⊤H−1(x)∇f(x) .
From the exercises, recall that this equals the dual norm ‖∇f(x)‖⋆x, which is by definition the optimum
value to the system (9.8).
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9.3.1 The Newton decrement

The Newton decrement of the function f at x ∈ dom f is defined as

λf (x) =
√

∇f(x)⊤H−1(x)∇f(x) ,

we simply write λ(x) when clear from the context. This quantity appeared in the previous proof as
‖H−1(x)∇f(x)‖x, the length of the Newton-step in the local norm at x. We also noted that it equals
the dual norm ‖∇f(x)‖⋆x.

It can also be used as an estimate on the gap f(x) − f(x∗) based on the following interpretation.
Using the second order Taylor approximation (9.4), and the definition of the Newton step (9.5), we
have

f(x)− f̂x(x
∗) ≤ f(x)− min

z∈dom f
f̂x(z) = f(x)− f̂x(x+N(x)) ,

Elementary calculation shows the following:

Lemma 9.3. f(x)− f̂x(x+N(x)) = 1
2λ

2
f (x).

Hence, 1
2λ

2
f (x

(t)) gives an upper bound on the optimality gap—when evaluating f̂x(t)(x) instead

of f(x). A common stopping criteria for Newton’s method is to terminate once λf (x
(t)) falls below a

certain threshold.

9.4 Affine invariance of Newton’s method

Let us consider the effect of an affine transformation g(x) = Ax + b on the different optimisation
methods. Here A ∈ R

n×n is an invertible matrix and b ∈ R
n. For simplicity, we assume b = 0

throughout, that is, g(x) = Ax is a linear transformation, but everything we show extends easily to
the case b 6= 0.

An affine transformation can be thought of as a change of coordinates and norms. For example,
the image of the unit ball B = {x ∈ R

n : ‖x‖ ≤ 1} will be

g(B) = {Ax ∈ R
n : ‖x‖ ≤ 1} = {x ∈ R

n : ‖A−1x‖ ≤ 1} = {x ∈ R
n : ‖x‖A−2 ≤ 1} .

Hence, the unit ball is transformed to an ellipsoid; the Euclidean norm gets replaced by ‖x‖A−2 ≤ 1.

Affine pre-conditioning for gradient descent An affine transformation can be a useful pre-
conditioning to improve the geometric properties relevant for a certain optimisation method, and
thereby achieve faster convergence. This is certainly applicable for gradient descent. For example,
consider the quadratic function f : R2 → R

f(x1, x2) =
1

2

(

Kx21 + x22
)

,

where K ≥ 1. Clearly, the minimiser is x∗ = 0. Starting from a point x(0), the standard gradient
descent step is

x(t+1) = x(t) − η∇f(x(t+1)) =
(

(1−Kη)x
(t)
1 , (1− η)x

(t)
2

)

.

Hence, we are only able to use small step-sizes to decrease the objective value. Already with η ≥ 3/K,

we will be overshooting, since |x(t+1)
1 | ≥ 2|x(t)1 |. Notice that the function is K-smooth; in accordance

with Lemma 4.6, we would choose η = 1/K. This leads to convergence in a single iteration if K = 1,
but at a slow pace for large values of K.

On the other hand, if we use the affine transformation g(x1, x2) = (x1/
√
K,x2) (i.e., shrinking

along the x-axis), then we obtain the function

h(x1, x2) = f(g(x1, x2)) = K

(

x1√
K

)2

+ x22 = x21 + x22 .

This is now a much nicer, 2-smooth function, where we can use η = 1 and achieve immediate conver-
gence.
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Affine invariance In contrast, we say that a method is affine invariant if such a pre-conditioning
does not make a change: replacing the function f(x) by

h(x) = f(g(x)) = f(Ax)

leads to the same sequence of iterates. Let us make this more precise. For an iterative algorithm,
consider a sequence of iterates x(t) obtained by starting from x(0) and using the function f(x). Let us
also consider another sequence y(t) obtained by starting from y(0) = A−1x(0), and using the function
h(x). Thus, h(y(0)) = f(x(0)).

Then, the algorithm is affine invariant, if for any invertible matrix A ∈ R
n×n, and for any starting

point x(0) ∈ dom f , we have y(t) = A−1x(t)—and consequently, h(y(t)) = f(x(t))—throughout.
Using the chain rule of derivatives, we get

∇h(x) = A⊤∇f(Ax) and Hh(x) = A⊤Hf (Ax)A . (9.9)

For gradient descent, the updates are

x(t+1) = x(t) − η∇f(x(t))
y(t+1) = y(t) − η∇h(x(t)) = y(t) − ηA⊤∇f(Ay(t)) .

Even if y(t) = A−1x(t), we typically have y(t+1) 6= A−1x(t+1), since A−1∇f(x(t)) 6= A⊤∇f(x(t)) in
general.

Affine invariance of Newton’s method A remarkable property of Newton’s method is affine
invariance: the method is unchanged under an affine pre-conditioning. Let us now verify this. Assume
y(t) = A−1x(t), and consider the updates

x(t+1) = x(t) +Nf (x
(t)) = x(t) −H−1

f (x(t))∇f(x(t))
y(t+1) = y(t) +Nh(y

(t)) = y(t) −H−1
h (y(t))∇h(y(t)) .

We verify y(t+1) = A−1x(t+1), or equivalently, Ay(t+1) = x(t+1). We use that H−1
h (y) =

(

A⊤Hf (Ay)A
)−1

=
A−1H−1

f (Ay)A−⊤, where A−⊤ = (A⊤)−1. Thus, using (9.9),

Ay(t+1) = Ay(t) −AH−1
h (y(t))∇h(y(t))

= x(t) −A
(

A−1H−1
f (Ay(t))A−⊤

)

·
(

A⊤∇f(Ay(t))
)

= x(t) −H−1
f (x(t))∇f(x(t)) ,

as required.

9.5 Quadratic convergence for optimisation

[Non examinable]
As an analogue of Theorem 9.1, we present a sufficient condition for quadratic convergence in

Newton’s algorithm for optimisation. We use the spectral norm ‖A‖2 of a matrix A ∈ R
m×n (see

Definition 1.9). We use the following simple properties (see exercises).

Lemma 9.4. For the spectral norm, we have

(i) ‖Ax‖2 ≤ ‖A‖2 · ‖x‖2 for every A ∈ R
m×n and x ∈ R

n.

(ii) ‖AB‖2 ≤ ‖A‖2 · ‖B‖2 for A ∈ R
m×k, B ∈ R

k×n.

(iii) If A ∈ R
n×n is a symmetric square matrix, then ‖A‖2 equals the largest absolute value of an

eigenvalue of A.
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Below, all norms not indicated otherwise are standard ℓ2 vector norms.

Theorem 9.5. Let f : Rn → R be twice differentiable, and let x∗ be a critical point, i.e., ∇f(x∗) = 0.
Assume that for some G ≥ 0 the following condition holds:

∥

∥H−1(x)H(y)− In
∥

∥

2
≤ 2G‖x− y‖ ∀x, y : ‖y − x∗‖ ≤ ‖x− x∗‖ ≤ 1

G
. (9.10)

Then, for any starting point x(0) with ‖x(0) − x∗‖ ≤ 1/G, the iterates of Newton’s method satisfy

‖x(t+1) − x∗‖ ≤ G‖x(t) − x∗‖2 .
Let us compare the condition to the one in Theorem 9.1. Assume we want to find a critical point x∗

of a univariate function g : R→ R, and let f(x) = g′(x). Thus, x∗ is a root of f . Then, (9.10) can be
written as |f ′(y)/f ′(x)− 1| ≤ 2G|x− y| for every x, y such that |y− x∗| ≤ |x− x∗| ≤ 1/G. We rewrite
this as |(f ′(y)−f ′(x))/f ′(x)| ≤ 2G|x−y|, and note that by the mean value theorem for the continuous
function f ′(x), there exists w ∈ [x, y] (or w ∈ [y, x]) such that f ′′(w) = (f ′(y) − f ′(x))/(y − x).
Hence, the condition becomes |f ′′(w)/f ′(x)| ≤ 2G, the same expression as in (9.2). Note also that
|y − x∗| ≤ |x− x∗| implies |w − x∗| ≤ |x− x∗|.

If f(x) = x⊤Qx + 〈p, x〉 is a quadratic function, then H(x) = 2Q for every x ∈ R
n, giving

H−1(x)H(y) = Im. The condition in the theorem holds with G = 0 (and 1/G =∞), consistently with
the earlier observation that for arbitrary x(0), Newton’s method finds the optimal solution in a single
iteration.

Proof of Theorem 9.5. It suffices to show the statement for t = 0. That implies ‖x(1)−x∗‖ ≤ G‖x(0)−
x∗‖2 ≤ 1/G, and hence we obtain the statement inductively for every iterate. Condition (9.10) requires
H(x) to be nonsingular for every ‖x− x∗‖ ≤ 1/G; hence, the Newton iterates are well-defined.

Let us define ϕ : [0, 1]→ R
n by ϕ(τ) = ∇f(x+τ(y−x)). Hence, ϕ(0) = ∇f(x), and ϕ(1) = ∇f(y).

We have
∇ϕ(τ) = H(x+ τ(y − x))(y − x) ,

as the directional second derivative vector. We apply the fundamental theorem of calculus (Theo-
rem 1.13) in each coordinate to get

∇f(y)−∇f(x) = ϕ(1)− ϕ(0) =

∫ 1

0
∇ϕ(τ)dτ =

∫ 1

0
H(x+ τ(y − x))(y − x)dτ . (9.11)

(Recall that the integral of an R→ R
n function is a vector in R

n that can be obtained by integrating
coordinate-wise.) We use this equation, along with ∇f(x∗) = 0 to bound

x(1) − x∗ = x(0) − x∗ −H−1(x(0))∇f(x(0))
= x(0) − x∗ +H−1(x(0))

(

∇f(x∗)−∇f(x(0))
)

= x(0) − x∗ +H−1(x(0))

∫ 1

0
H(x(0) + τ(x∗ − x(0)))(x∗ − x(0))dτ

=

∫ 1

0

(

H−1(x(0))H
(

x(0) + τ(x∗ − x(0))
)

− In

)

(x∗ − x(0))dτ

(9.12)

We use (9.10) to bound ‖x(1) − x∗‖. We see that

∥

∥

∥
x(1) − x∗

∥

∥

∥
≤
∫ 1

0

∥

∥

∥

(

H−1(x(0))H
(

x(0) + τ(x∗ − x(0))
)

− In

)

(x∗ − x(0))
∥

∥

∥
dτ

≤
∫ 1

0

∥

∥

∥H−1(x(0))H
(

x(0) + τ(x∗ − x(0))
)

− In

∥

∥

∥

2
·
∥

∥

∥x∗ − x(0)
∥

∥

∥ dτ

≤
∫ 1

0
2G
∥

∥

∥

(

x(0) + τ(x∗ − x(0))
)

− x(0)
∥

∥

∥ ·
∥

∥

∥x∗ − x(0)
∥

∥

∥ dτ

= 2G
∥

∥

∥x∗ − x(0)
∥

∥

∥

2
∫ 1

0
τdτ = G

∥

∥

∥x∗ − x(0)
∥

∥

∥

2
,

(9.13)

completing the proof.
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Corollary 9.6. Let f : R
n → R be a twice differentiable m-strongly convex function and assume the

Hessian H(x) is B-Lipschitz, that is,

‖H(x)−H(y)‖2 ≤ B‖x− y‖ ∀x, y ∈ dom f.

If ‖∇f(x(0))‖ ≤ 2m2/B for the starting point x(0), then the iterates of Newton’s method satisfy
∥

∥

∥
x(t+1) − x∗

∥

∥

∥
≤ B

2m

∥

∥

∥
x(t) − x∗

∥

∥

∥

2
.

Proof. Recall that m-strong convexity is equivalent to H(x) � mIn for all x ∈ dom f (Theorem 4.9).
This implies that H−1(x) � 1

mIn. (To see this, recall that A � mIn is equivalent to the smallest
eigenvalue being ≥ m, and A � 1

mIm is equivalent to the largest eigenvalue being ≤ 1
m . Further, the

eigenvalues of A−1 are the inverses of the eigenvalues of A. )
According to Lemma 9.4(iii), ‖H−1(x)‖2 ≤ 1

m for any x ∈ dom f . For any x, y ∈ dom f , we see
that

‖H−1(x)H(y)− In‖2 = ‖H−1(x)(H(y)−H(x))‖2 ≤ ‖H−1(x)‖2 · ‖H(y)−H(x)‖2 ≤
B

m
‖x− y‖ ,

where the first inequality uses Lemma 9.4(ii). This verifies (9.10) for G = B/(2m). We need one more
bound that relates the distance to optimality and the gradient:

Claim 9.7. If f is m-strongly convex and differentiable with minimiser x∗, then

‖x− x∗‖ ≤ 1

m
‖∇f(x)‖ .

Proof. We again use strong convexity. Proposition 4.11 shows that

f(x)− f(x∗) ≤ 1

2m
‖∇f(x)‖2 .

On the other hand, using ∇f(x∗) = 0 we get

f(x)− f(x∗) = 〈∇f(x∗), x− x∗〉+Df (x, x
∗) ≥ m

2
‖x− x∗‖2 .

This implies the claim.

From this claim and the assumption ‖∇f(x(0))‖ ≤ 2m2/B, we get ‖x(0) − x∗‖ ≤ 2m/B. Hence,
Theorem 9.5 is applicable with G = B/(2m).

9.5.1 Affine invariant conditions on convergence

The limitation of the above analysis is that the conditions in Theorem 9.5 and Corollary 9.6 are not
affine invariant: they may hold under certain affine preconditionings but not others, even though the
sequence of steps in Newton’s method remains identical under all such preconditionings.

Below, we formulate the affine invariant conditions on quadratic convergence. To get some intution,
observe that Theorem 9.5 bounds the stability of the Hessian matrix H(x): if x and y are near, then
H−1(x)H(y) should be close to the identity matrix In in spectral norm; in other words, H(x) ≈ H(y).
To be more precise, let G < 1/2; according to Lemma 9.4(iii), the condition in Theorem 9.5 is equivalent
to saying that the eigenvalues of H−1(x)H(y) − In are between −2G‖x − y‖ and 2G‖x − y‖, or
equivalently,

−2G‖x− y‖In � H−1(x)H(y)− In � 2G‖x− y‖In .
We can rearrange this as

(1− 2G‖x− y‖) In � H−1(x)H(y) � (1 + 2G‖x− y‖) In ,
that leads to

(1− 2G‖x− y‖)H(x) � H(y) � (1 + 2G‖x− y‖)H(x) .

The affine invariant conditions formulate the analogous requirement, but using the local norm instead
of the ℓ2-norm. Please refer to [6, Section 9.6] for a proof. Instead of distance from optimality, the
convergence is measured in the Newton-decrement.
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Theorem 9.8. Let f : Rn → R be twice differentiable. Assume that

(1− 3‖x− y‖x)H(x) � H(y) � (1 + 3‖x− y‖x)H(x) ∀x, y ∈ dom f : ‖x− y‖x ≤ 1/6 .

If λf (x
(0)) ≤ 1/6 for the starting point x(0), then

‖λf (x
(t+1))‖ ≤ 3‖λf (x

(t))‖2

holds in each iteration of Newton’s algorithm.

The condition in the theorem holds for the important class of self-concordant functions, introduced
by Nesterov and Nemirovski. We do not define this class here but mention their key importance in the
context of interior point methods ; see e.g. [6, Chapters 10 and 11].

9.6 The damped Newton method

[Non examinable]

We gave sufficient conditions for quadratic convergence of Newton’s method. However, this requires
being close enough to the optimum, and from a further starting point, the iterations may not converge
at all, as already seen in the example of root finding. This can be addressed by making shorter steps
in the Newton direction, namely, using updates

x(t+1) = x(t) − ηtN(x(t)) ,

for a step-size ηt ∈ [0, 1]. Recall N(x(t)) = H−1
f (x(t))∇f(x(t)). The best option would be exact line

search that determines ηt = argminη f(x
(t) − ηN(x(t))). This may be computationally too expensive,

as already was the case for gradient methods.

Backtracking line search A fast alternative to exact line search that is able to calibrate the step
size is backtracking line search; this is applicable for gradient descent as well as Netwon’s method.
We use a search direction v ∈ R; this will be v = −∇f(x(t)) in gradient descent and v = N(x(t)) for
Newton’s method.

We fix two parameters: 0 < α < 1
2 , and 0 < β < 1. Instead of finding the optimal step size, we

wish to obtain η such that

f(x(t) + ηv) ≤ f(x(t)) + αη
〈

∇f(x(t)), v
〉

. (9.14)

From the first-order Taylor approximation around, we see that this must be true for small enough
η > 0. We wish to approximately identify the largest value of η where this holds.

This can be done by starting form η = 1, and as long as (9.14) is not satisfied, we decrease η by a
factor β. This can be formally described as follows.

1. η ← 1.

2. While f(x(t) + ηv) > f(x(t)) + αη 〈∇f(x), v〉, update η ← βη.

Setting the value of β gives a trade-off between speed and accuracy. For larger values of β (that
is, close to 1), we might need several calibrating iterations. On the other hand, a smaller value (e.g.
β = 0.3) provides fast convergence, but the resulting t might be a factor 1/β worse than the best choice
for (9.14). The value of α is typically chosen between 0.01 and 0.3.

For Newton’s method, i.e., v = N(x(t)) the condition (9.14) can be written as

f(x(t) + ηv) ≤ f(x(t))− αηλ2
f (x

(t)) . (9.15)
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Description of the algorithm We are ready to describe the damped Newton method.

Damped Newton method

Input: A twice differentiable convex function f : Rn → R, a starting
point x(0) ∈ dom f , parameters α ∈ (0, 1/3), β ∈ (0, 1), and accuracy
requirement ε > 0.
Output: A solution x(t) with Newton-decrement λf (x

(t)) < ε.
Repeat

Compute the Newton direction N(x(t)) = −H−1
f (x(t))∇f(x(t)) and

decrement λ2
f (x

(t)) = ∇f(x(t))⊤H−1
f (x(t))∇f(x(t)) ;

If λf (x
(t)) < ε then terminate returning x(t).

Use backtracking line-search with parameters α and β to
determine ηt ∈ (0, 1) ;

x(t+1) = x(t) − ηtN(x(t)) ;

9.6.1 Convergence analysis

We consider the case when f is both m-strongly convex and M -smooth:

mIn ≺ H(x) ≤MIn ∀x ∈ dom f .

Further, we require that the Hessian H(x) is B-Lipschitz, that is,

‖H(x)−H(y)‖2 ≤ B‖x− y‖ ∀x, y ∈ dom f.

As noted above, these conditions are not affine invariant; an affine invariant analysis based on self-
concordance is given e.g. in [1, Section 9.6.4].

Let us connect the termination criterion to distance from optimality.

Lemma 9.9. For a function f : Rn → R as above,

m√
M
‖x− x∗‖ ≤ λf (x) ≤

M√
m
‖x− x∗‖

Proof. By assumption, mIn � H(x) �MIn, and therefore 1
M In � H−1(x) � 1

mIn. Hence,

1

M
‖∇f(x)‖2 ≤ λ2

f (x) = ∇f(x)⊤H−1(x)∇f(x) ≤ 1

m
‖∇f(x)‖2

Claim 9.7 implies the first inequality in the statement. For the second inequality, we use that by
definition of M -smoothness,

‖∇f(x)‖ = ‖∇f(x)−∇f(x∗)‖ ≤M‖x− x∗‖ .

We define parameters

δ =
2m2

B
and γ = αβ

m5

M2B
.

(The precise values are not very important; these are constants determined by α, β,m,M and B). The
key lemma of the analysis is the following:

Lemma 9.10. For a function f : Rn → R as above, in every iteration of the damped Newton method,

(i) If ‖∇f(x(t))‖ ≥ δ, then

f(x(t+1))− f(x(t)) ≤ −γ .
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(ii) If ‖∇f(x(t))‖ ≤ δ, then ηt = 1 and

∥

∥

∥x(t+1) − x∗
∥

∥

∥ ≤ B

2m

∥

∥

∥x(t) − x∗
∥

∥

∥

2
.

for all subsequent iterates.

Note that we have already proved the bound in part (ii) in Corollary 9.6. See [1, Section 9.5.3]
for the proof of part (i) and for the proof of ηt = 1 in part (ii). In light of this lemma, the algorithm
comprises two phases.

1. In the damped Newton phase, step-sizes ηt ≤ 1 are chosen, and the optimality gap f(x(t))−f(x∗)
decreases by γ. Hence, the total number of such iterations is at most (f(x(0))− f(x∗))/γ.

2. In the pure Newton phase, full steps with ηt = 1 are used, and we experience quadratic conver-

gence. In C log log(Mm/(Bε)) steps for some C > 0 we get to an iterate
∥

∥x(t) − x∗
∥

∥ ≤
√
m

M ε,

and consequently, λf (x
(t)) ≤ ε by Lemma 9.9.

Thus, Lemma 9.10 yields the following running time bound:

Theorem 9.11. Let f : Rn → R be a twice differentiable, m-strongly convex, M -smooth function, and
further assume the Hessian is B-Lipschitz. Let x∗ denote the minimiser of fand let x(0) ∈ dom f be a
given starting point. Then, the damped Newton method finds a ε-accurate solution (with λf (x

(t)) < ε)
in

M2B

αβm5
(f(x(0))− f(x∗)) + C log log

(

Mm

Bε

)

for some C > 0.

The log log function is extremely slow growing. In practice, one never needs more than 6 iterations
in the pure Newton phase to get a highly accurate solution.

9.6.2 Comparison with gradient descent

The damped Newton phase could also be replaced by gradient descent with comparable convergence
guarantees. Newton’s algorithm is typically faster even in this phase. However, each iteration of
Newton’s algorithm requires significantly more computation than a gradient update. We do not only
need to compute the Hessian H(x), but also solve the system of linear equations H(x)q = ∇f(x). A
naïve approach with Gaussian elimination would give n3 arithmetic operations per iteration (up to
constant overhead). There are better algorithms known, the theoretical current best improving the
exponent of n to roughly 2.37. Still, this is significant extra work compared to a simple gradient step.

Computing the Hessian itself might be a difficult task. Quasi-Newton methods relax the requirement
of using the exact Hessian, and instead use an estimate based on the previous iterates of the algorithm.
We do not discuss these here; a gentle introduction can be found in [2, Chapter 8].
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