Hauptseminar Algorithmen und Optimierung (S2C2) Convex Optimization

Wenzheng Li Haoyuan Ma László Végh

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Convex Optimization

General optimization problems characterized by

Local optima = Global optima

- Rich theory on characterizing optimality and developing efficient algorithms
- Convergence bounds and polynomial-time algorithms can be developed for different classes of convex programs
- Generalizes linear programming
- Theory developed here can be used also in nonconvex settings.

Gradient descent

(日) (日) (日) (日) (日) (日) (日)

• Simple and natural iterative algorithm for $\min f(x)$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \alpha \nabla f(\mathbf{x}^{(t)})$$

- Convergence speed depends on properties of the function.
- Types of convergence: get a ε-approximate solution in time proportional to 1/ε, 1/√ε, or log(1/ε) time.
- Can be extended to convex constrained setting min_{x∈K} f(x)
- Needs limited access to the function
- Immense applications in machine learning

Newton's method

(日) (日) (日) (日) (日) (日) (日)

- Besides the gradient $f(x) \in \mathbb{R}^n$, can also access the Hessian $H(x) = [\partial_{ij}f(x)]_{i,j \in [n]}$
- Needs more computations than gradient descent but enables much stronger convergence bounds.
- Key to interior point methods that yield polynomial-time algorithms for linear and convex programs.

Vishnoi: Algorithms for Convex Optimization

- Gentle introduction to convex optimization
- Strong discrete optimization perspective: examples with flows and LP
- Main source for the seminar, but will have additional sources for certain topics

・ロット (雪) (日) (日) (日)

Structure of seminars

(日) (日) (日) (日) (日) (日) (日)

Each seminar session is structured as follows:

• First part of the talk (10-20 minutes)

Introduce the topic of the talk.

Explain what the main goal or main result will be.

Give some motivation and provide some context — why is the result interesting/relevant?

2 Questions

One or two (multiple-choice) questions from the speaker to the audience.

Take questions from the audience.

Structure of seminars

Each seminar session is structured as follows:

- **1** First part of the talk (10-20 minutes)
- **2** Questions
- Second part of the talk (55-65 minutes) Present proofs, but focus on the main ideas rather than detailed calculations.

O Discussion

Questions from the audience.

Parts 1 and 3 must not take more than 75 minutes in total. Recall definitions and results from previous talks when you use them.

What we expect

- Prepare a talk on your assigned topic, including questions for the audience.
- Prepare a 1-2 pages summary containing the most important results and definitions.
- Give an approval talk approximately 2-3 weeks before your talk.
- Participate actively in the discussions during the seminar.
- In addition to reading the assigned chapter, it might be necessary to look into some other chapters or papers.

List of Chapters

- Chapter 3: Convexity
- 2 Chapter 4: Convex Optimization and Efficiency
- **3** Chapter 5: Duality and Optimality
- 4 Chapter 6: Gradient Descent
- (other): Gradient Methods for Constrained Optimization
 1-2 students

List of Chapters

- Chapter 7/other: Mirror Descent and Multiplicative Weights Update
 - 1-2 students
- (other): Online convex optimization
 2 students
- 8 Chapter 8: Accelerated Gradient Descent
- Chapter 9: Newton's method 2 students
- Chapters 10-11: Interior Point Methods
 - 1-2 students

Topic assignment and registration

- Website with these slides, papers, and assignment will be available at https://www.algopt.uni-bonn.de/teachingpages/winter-term-25-26
- If you would like to participate, send an email to Ulrich Brenner (brenner@or.uni-bonn.de) indicating your name and topic preferences, including at least 3 topics, by Monday 21 July 9am.
- We will inform you by email about the assignment of topics.
- Each participant will also be assigned a supervisor, Wenzheng Li or Haoyuan Ma, who can help with questions.